FREE BOOKS

Author's List




PREV.   NEXT  
|<   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120  
121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   >>   >|  
neglected. [Note 1: Magnesium ammonium phosphate, as noted below, is slightly soluble under the conditions of operation. Consequently the unavoidable errors of analysis are greater in this determination than in those which have preceded it, and some divergence may be expected in duplicate analyses. It is obvious that the larger the amount of substance taken for analysis the less will be the relative loss or gain due to unavoidable experimental errors; but, in this instance, a check is placed upon the amount of material which may be taken both by the bulk of the resulting precipitate of ammonium phosphomolybdate and by the excessive amount of ammonium molybdate required to effect complete separation of the phosphoric acid, since a liberal excess above the theoretical quantity is demanded. Molybdic acid is one of the more expensive reagents.] [Note 2: Soluble silicic acid would, if present, partially separate with the phosphomolybdate, although not in combination with molybdenum. Its previous removal by dehydration is therefore necessary.] [Note 3: When washing the siliceous residue the filtrate may be tested for calcium by adding ammonia, since that reagent neutralizes the acid which holds the calcium phosphate in solution and causes precipitation; but after the removal of the phosphoric acid in combination with the molybdenum, the addition of an oxalate is required to show the presence of calcium.] [Note 4: An excess of nitric acid exerts a slight solvent action, while ammonium nitrate lessens the solubility; hence the neutralization of the former by ammonia.] [Note 5: The precipitation of the phosphomolybdate takes place more promptly in warm than in cold solutions, but the temperature should not exceed 60 deg.C. during precipitation; a higher temperature tends to separate molybdic acid from the solution. This acid is nearly white, and its deposition in the filtrate on long standing should not be mistaken for a second precipitation of the yellow precipitate. The addition of 75 cc. of ammonium molybdate solution insures the presence of a liberal excess of the reagent, but the filtrate should be tested as in all quantitative procedures. The precipitation is probably complete in many cases in less than twelve hours; but it is better, when practicable, to allow the solution to stand for this length of time. Vigorous shaking or stirring promotes the separation of the precipitate.] [Note 6: The composition o
PREV.   NEXT  
|<   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120  
121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   >>   >|  



Top keywords:

ammonium

 

precipitation

 

solution

 

amount

 

precipitate

 

filtrate

 

calcium

 
excess
 

phosphomolybdate

 

liberal


temperature
 

separation

 

complete

 

errors

 
unavoidable
 
molybdate
 

required

 

separate

 

molybdenum

 

reagent


phosphate

 

presence

 

addition

 

ammonia

 
removal
 

tested

 

combination

 
phosphoric
 

analysis

 

length


Vigorous

 

neutralization

 

solutions

 

promptly

 

solubility

 

exerts

 

stirring

 

shaking

 
promotes
 

nitric


slight

 

solvent

 

composition

 

lessens

 

nitrate

 

action

 

yellow

 

mistaken

 
standing
 

insures