FREE BOOKS

Author's List




PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>  
= 316.4:86.9, and the factor for the conversion of thiosulphate into an equivalent of manganese dioxide is 86.9/316.4. 4. To calculate the volume of a reagent required for a specific operation, it is necessary to know the exact reaction which is to be brought about, and, as with the calculation of factors, to keep in mind the molecular relations between the reagent and the substance reacted upon. For example, to estimate the weight of barium chloride necessary to precipitate the sulphur from 0.1 gram of pure pyrite (FeS_{2}), the proportion should read 488. 120.0 2(BaCl_{2}.2H_{2}O):FeS_{2} = x:0.1, where !x! represents the weight of the chloride required. Each of the two atoms of sulphur will form upon oxidation a molecule of sulphuric acid or a sulphate, which, in turn, will require a molecule of the barium chloride for precipitation. To determine the quantity of the barium chloride required, it is necessary to include in its molecular weight the water of crystallization, since this is inseparable from the chloride when it is weighed. This applies equally to other similar instances. If the strength of an acid is expressed in percentage by weight, due regard must be paid to its specific gravity. For example, hydrochloric acid (sp. gr. 1.12) contains 23.8 per cent HCl !by weight!; that is, 0.2666 gram HCl in each cubic centimeter. 5. It is sometimes desirable to avoid the manipulation required for the separation of the constituents of a mixture of substances by making what is called an "indirect analysis." For example, in the analysis of silicate rocks, the sodium and potassium present may be obtained in the form of their chlorides and weighed together. If the weight of such a mixture is known, and also the percentage of chlorine present, it is possible to calculate the amount of each chloride in the mixture. Let it be assumed that the weight of the mixed chlorides is 0.15 gram, and that it contains 53 per cent of chlorine. The simplest solution of such a problem is reached through algebraic methods. The weight of chlorine is evidently 0.15 x 0.53, or 0.0795 gram. Let x represent the weight of sodium chloride present and y that of potassium chloride. The molecular weight of NaCl is 58.5 and that of KCl is 74.6. The atomic weight of chlorine is 35.5. Then x + y = 0.15 (35.5/58.5)x + (35.5/74.6)y = 0.00795 Solving these equations for x shows the weight of NaCl to be 0.0625 gram. The
PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>  



Top keywords:
weight
 

chloride

 

required

 
chlorine
 

molecular

 

mixture

 

present

 

barium

 

potassium

 

analysis


sodium

 
weighed
 

molecule

 
chlorides
 
sulphur
 

percentage

 

specific

 

reagent

 

calculate

 

indirect


making

 

called

 

constituents

 

centimeter

 

desirable

 
separation
 

manipulation

 

substances

 

solution

 

problem


atomic

 

simplest

 
reached
 

represent

 

evidently

 

algebraic

 

methods

 

Solving

 

obtained

 

equations


amount
 
assumed
 

silicate

 

reacted

 

estimate

 
precipitate
 

substance

 
relations
 
pyrite
 

proportion