FREE BOOKS

Author's List




PREV.   NEXT  
|<   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155  
156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>  
weight of KCl is found by subtracting this from 0.15. The above is one of the most common types of indirect analyses. Others are more complex but they can be reduced to algebraic expressions and solved by their aid. It should, however, be noted that the results obtained by these indirect methods cannot be depended upon for high accuracy, since slight errors in the determination of the common constituent, as chlorine in the above mixture, will cause considerable variations in the values found for the components. They should not be employed when direct methods are applicable, if accuracy is essential. PROBLEMS (The reactions necessary for the solution of these problems are either stated with the problem or may be found in the earlier text. In the calculations from which the answers are derived, the atomic weights given on page 195 have been employed, using, however, only the first decimal but increasing this by 1 when the second decimal is 5 or above. Thus, 39.1 has been taken as the atomic weight of potassium, 32.1 for sulphur, etc. This has been done merely to secure uniformity of treatment, and the student should remember that it is always well to take into account the degree of accuracy desired in a particular instance in determining the number of decimal places to retain. Four-place logarithms were employed in the calculations. Where four figures are given in the answer, the last figure may vary by one or (rarely) by two units, according to the method by which the problem is solved.) VOLUMETRIC ANALYSIS 1. How many grams of pure potassium hydroxide are required for exactly 1 liter of normal alkali solution? !Answer!: 56.1 grams. 2. Calculate the equivalent in grams (a) of sulphuric acid as an acid; (b) of hydrochloric acid as an acid; (c) of oxalic acid as an acid; (d) of nitric acid as an acid. !Answers!: (a) 49.05; (b) 36.5; (c) 63; (d) 63. 3. Calculate the equivalent in grams of (a) potassium hydroxide; (b) of sodium carbonate; (c) of barium hydroxide; (d) of sodium bicarbonate when titrated with an acid. !Answers!: (a) 56.1; (b) 53.8; (c) 85.7; (d) 84. 4. What is the equivalent in grams of Na_{2}HPO_{4} (a) as a phosphate; (b) as a sodium salt? !Answers!: (a) 47.33; (b) 71.0. 5. A sample of aqueous hydrochloric acid has a specific gravity of 1.12 and contains 23.81 per cent hydrochloric acid by weight. Calculate the grams and the milliequivalents of hydrochloric acid (HCl
PREV.   NEXT  
|<   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155  
156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>  



Top keywords:
hydrochloric
 

accuracy

 

Answers

 
potassium
 

weight

 

decimal

 

employed

 

sodium

 

equivalent

 

Calculate


hydroxide

 
problem
 

calculations

 
solution
 
methods
 

common

 

solved

 

indirect

 

atomic

 

retain


instance

 

required

 

number

 

determining

 

places

 
ANALYSIS
 

rarely

 

VOLUMETRIC

 

method

 

figures


answer

 

figure

 
logarithms
 

sample

 

aqueous

 

phosphate

 

specific

 

gravity

 

milliequivalents

 

nitric


oxalic
 
alkali
 

Answer

 

sulphuric

 

carbonate

 
barium
 

bicarbonate

 
titrated
 
normal
 

determination