FREE BOOKS

Author's List




PREV.   NEXT  
|<   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129  
130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   >>   >|  
over the blast lamp until the weight is constant. As the calcium oxide absorbs moisture from the air, it must (after cooling) be weighed as rapidly as possible. The precipitate may, if preferred, be placed in a weighted porcelain crucible. After burning off the filter and heating for ten minutes the calcium precipitate may be converted into calcium sulphate by placing 2 cc. of dilute sulphuric acid in the crucible (cold), heating the covered crucible very cautiously over a low flame to drive off the excess of acid, and finally at redness to constant weight (Note 7). From the weight of the oxide or sulphate, calculate the percentage of the calcium (Ca) in the limestone, remembering that only one fifth of the total solution is used for this determination. [Note 1: If the calcium were precipitated from the entire solution, the quantity of the precipitate would be greater than could be properly treated. The solution is, therefore, diluted to a definite volume (500 cc.), and exactly one fifth (100 cc.) is measured off in a graduated flask or by means of a pipette.] [Note 2: The filtrate from the calcium oxalate should be made slightly acid immediately after filtration, in order to avoid the solvent action of the alkaline liquid upon the glass.] [Note 3: The accurate quantitative separation of calcium and magnesium as oxalates requires considerable care. The calcium precipitate usually carries down with it some magnesium, and this can best be removed by redissolving the precipitate after filtration, and reprecipitation in the presence of only the small amount of magnesium which was included in the first precipitate. When, however, the proportion of magnesium is not very large, the second precipitation of the calcium can usually be avoided by precipitating it from a rather dilute solution (800 cc. or so) and in the presence of a considerable excess of the precipitant, that is, rather more than enough to convert both the magnesium and calcium into oxalates.] [Note 4: The ionic changes involved in the precipitation of calcium as oxalate are exceedingly simple, and the principles discussed in connection with the barium sulphate precipitation on page 113 also apply here. The reaction is C_{2}O_{4}^{--} + Ca^{++} --> [CaC_{2}O_{4}]. Calcium oxalate is nearly insoluble in water, and only very slightly soluble in acetic acid, but is readily dissolved by the strong mineral acids. This behavior with acids is explaine
PREV.   NEXT  
|<   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129  
130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   >>   >|  



Top keywords:
calcium
 

precipitate

 

magnesium

 

solution

 

weight

 
oxalate
 
sulphate
 

precipitation

 
crucible
 

presence


excess

 

dilute

 
heating
 

considerable

 
filtration
 

oxalates

 
constant
 
slightly
 

redissolving

 

requires


avoided

 

precipitating

 

separation

 

removed

 

accurate

 

quantitative

 

included

 

carries

 

amount

 

proportion


reprecipitation

 
simple
 

insoluble

 

Calcium

 

reaction

 
soluble
 

acetic

 
behavior
 

explaine

 
mineral

strong
 

readily

 
dissolved
 
involved
 

convert

 

precipitant

 
exceedingly
 

barium

 
connection
 

principles