FREE BOOKS

Author's List




PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  
ater, to which 1 cc. of dilute hydrochloric acid (sp. gr. 1.12) has been added (Note 2). Heat the solution to boiling, and while at the boiling point add concentrated nitric acid (sp. gr. 1.42), !drop by drop! (noting the volume used), until the brown coloration, which appears after the addition of a part of the nitric acid, gives place to a yellow or red (Note 3). Avoid a large excess of nitric acid, but be sure that the action is complete. Pour this solution cautiously into about 200 cc. of water, containing a slight excess of ammonia. Calculate for this purpose the amount of aqueous ammonia required to neutralize the hydrochloric and nitric acids added (see Appendix for data), and also to precipitate the iron as ferric hydroxide from the weight of the ferrous ammonium sulphate taken for analysis, assuming it to be pure (Note 4). The volume thus calculated will be in excess of that actually required for precipitation, since the acids are in part consumed in the oxidation process, or are volatilized. Heat the solution to boiling, and allow the precipitated ferric hydroxide to settle. Decant the clear liquid through a washed filter (9 cm.), keeping as much of the precipitate in the beaker as possible. Wash twice by decantation with 100 cc. of hot water. Reserve the filtrate. Dissolve the iron from the filter with hot, dilute hydrochloric acid (sp. gr. 1.12), adding it in small portions, using as little as possible and noting the volume used. Collect the solution in the beaker in which precipitation took place. Add 1 cc. of nitric acid (sp. gr. 1.42), boil for a few moments, and again pour into a calculated excess of ammonia. Wash the precipitate twice by decantation, and finally transfer it to the original filter. Wash continuously with hot water until finally 3 cc. of the washings, acidified with nitric acid (Note 5), show no evidences of the presence of chlorides when tested with silver nitrate. The filtrate and washings are combined with those from the first precipitation and treated for the determination of sulphur, as prescribed on page 112. [Note 1: If a selection of pure material for analysis is to be made, crystals which are cloudy are to be avoided on account of loss of water of crystallization; and also those which are red, indicating the presence of ferric iron. If, on the other hand, the value of an average sample of material is desired, it is preferable to grind the whole together, mix thoroughly, and t
PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  



Top keywords:
nitric
 
excess
 
solution
 
volume
 

ferric

 

precipitate

 

boiling

 

hydrochloric

 

precipitation

 

filter


ammonia

 

filtrate

 

required

 

beaker

 

finally

 

decantation

 

dilute

 
washings
 
analysis
 

presence


calculated

 

hydroxide

 
noting
 

material

 

acidified

 

average

 
continuously
 

original

 

transfer

 
moments

preferable

 
desired
 

adding

 

Dissolve

 
sample
 

Collect

 

portions

 

sulphur

 

determination

 

treated


avoided

 
prescribed
 
cloudy
 

selection

 

crystals

 

account

 

combined

 

evidences

 

chlorides

 
nitrate