FREE BOOKS

Author's List




PREV.   NEXT  
|<   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146  
147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   >>   >|  
proportional to the planets' resisting energy. This, however, is on the hypothesis that the planets are not permeable by the radial stream, which, perhaps, is more consistent with analogy than with the reality. And it is more probable that the mean atomic weight of a planet's elements tends more to fix the position of equilibrium for each. Under the law of gravity, a planet may revolve at any distance from the sun, but if we superadd a centripulsive force, whose law is not that of gravity, but yet in some inverse ratio of the distances, and this force acts only superficially, it would be possible to make up in volume what is wanted in density, and a lighter planet might thus be found occupying the position of a dense planet. So the planet Jupiter, respecting only his resisting surface, is better able to withstand the force of the radial stream at the earth than the earth itself. To understand this, it is necessary to bear in mind, that, as far as planetary matter is concerned, the earth would revolve in Jupiter's orbit in the same periodic time as Jupiter, under the law of gravity: but that, in reality, the whole of the gravitating force is not effective, and that the equilibrium of a planet is due to a nice balance of interfering forces arising from the planet's physical peculiarities. As in a refracting body, the density of the ether may be considered inversely as the refraction, and this as the atomic weight of the refracting material, so, also, in a planet, the density of the ether will be inversely in the same ratio of the density of the matter approximately. Hence, the density of the ether within the planet Jupiter is greater than that within the earth; and, on this ethereal matter, the sun has no power to restrain it in its orbit, so that the centrifugal momentum of Jupiter would be relatively greater than the centrifugal momentum of the earth, were it also in Jupiter's orbit with the same periodic time. Hence, to make an equilibrium, the earth should revolve in a medium of less density, that there may be the same proportion between the external ether, and the ether within the earth, as there is between the ether around Jupiter and the ether within; so that the centrifugal tendency of the dense ether at Jupiter shall counteract the greater momentum of the dense ether within Jupiter; or, that the lack of centrifugal momentum in the earth should be rendered equal to the centrifugal momentum of Jupiter, by the defici
PREV.   NEXT  
|<   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146  
147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   >>   >|  



Top keywords:

Jupiter

 
planet
 

density

 

momentum

 

centrifugal

 

revolve

 
gravity
 
equilibrium
 

greater

 
matter

periodic

 

inversely

 

refracting

 

reality

 

atomic

 

weight

 

radial

 

planets

 
resisting
 

stream


position

 

interfering

 

balance

 

forces

 
physical
 

arising

 
counteract
 

gravitating

 

concerned

 
defici

rendered

 

peculiarities

 

effective

 

proportion

 

external

 

ethereal

 
approximately
 

tendency

 

restrain

 

considered


material

 

refraction

 

medium

 

lighter

 
distance
 
centripulsive
 

superadd

 

elements

 
hypothesis
 

proportional