FREE BOOKS

Author's List




PREV.   NEXT  
|<   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166  
167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   >>   >|  
ned the form of its orbit and its periodic time to be very similar to the lost comet of 1770. These conclusions were published in a western paper in October 1844, on which occasion he expressed the conviction, that this was no other than the comet of 1770. As the question bore strongly on his theory he paid the greater attention to it, and had, previously to this time, often searched in hopes of finding that very comet. Since then, M. Le Verrier has examined the question of identity and given his decision against it; but the author is still sanguine that the comet of 1844 is the same as that of 1770, once more settled at its natural distance from the sun. This comet returns to its perihelion on the 6th of August, 1855, according to Dr. Brunnow, when, it is hoped, the question of identity will be reconsidered with reference to the author's principles; and, that when astronomers become satisfied of this, they will do him the justice of acknowledging that he was the first who gave publicity to the fact, that the "Lost Comet" was found. That comets do experience a resistance, is undeniable; but not in the way astronomers suppose, if these views be correct. The investigations of Professor Encke, of Berlin, on the comet which bears his name, has determined the necessity of a correction, which has been applied for several returns with apparent success. But there is this peculiarity about it, which adds strength to our theory: "The Constant of Resistance" requires a change after perihelion. The necessity for this change shows the action of the radial stream. From the law of this force, (reckoning on the central plane of the vortex,) there is an outstanding portion, acting as a disturbing power, in the sub-duplicate ratio of the distances inversely. If we only consider the mean or average effect in orbits nearly circular, this force may be considered as an ablatitious force at all distances below the mean, counterbalanced by an opposite effect at all distances above the mean. But when the orbits become very eccentrical, we must consider this force as momentarily affecting a comet's velocity, diminishing it as it approaches the perihelion, and increasing it when leaving the perihelion. A resolution of this force is also requisite for the comet's distance above the central plane of the vortex, and a correction, likewise, for the intensity of the force estimated in that plane. There is also a correction necessary for the perihelio
PREV.   NEXT  
|<   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166  
167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   >>   >|  



Top keywords:
perihelion
 

correction

 

question

 
distances
 
identity
 
author
 

effect

 

necessity

 

vortex

 

change


astronomers
 
returns
 

central

 

orbits

 

distance

 

theory

 

requires

 

Resistance

 

Constant

 

strength


requisite
 

action

 

radial

 
resolution
 

likewise

 
intensity
 
determined
 

Berlin

 

perihelio

 

success


leaving

 

peculiarity

 
apparent
 
applied
 

estimated

 
counterbalanced
 

inversely

 

duplicate

 

Professor

 

circular


average

 

considered

 
ablatitious
 

disturbing

 
reckoning
 
diminishing
 

velocity

 

approaches

 
increasing
 

affecting