FREE BOOKS

Author's List




PREV.   NEXT  
|<   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175  
176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   >>  
ing the exterior envelope of a comet, becomes inversely as the 2.5th power of the distances from the comet's centre.[45] This being the law of the radial stream, it follows, of course, that a comet's diameter is inversely as the force of the radial stream. It must, however, be borne in mind, that we are speaking of the atomic density, and not of density by compression; for this cometary dust, which renders luminous the escaping ether of the nucleus, must be far too much diffused to merit the name of an elastic fluid. May not the concentric rings, which were so conspicuous in the comet of 1811, be owing to differences in the gravitating forces of such particles, sifted, as it were, and thus arranged, according to some ratio of the distances, by the centripulsive force of the electric coma, leaving vacant intervals, through which the ether passed without becoming luminous? This at least is the explanation given by our theory. We may, indeed, consider it possible that the escaping ether, when very intense, might be rendered luminous by passing into the surrounding ether, and, as it became more diffused by radiation, at last become invisible. In this case, as the law of radiation is as the squares of the distances from the centre inversely, the rays would be more and more bent at right angles, or apparently shortened, as the power of the radial stream increased, and the apparent diameters of the coma would be diminished faster than the ratio of the 2.5th power of the distances. But whichever view we adopt, the diameter would again increase in the same ratio on leaving the sun, if we make allowance for increase of temperature, as well as for diminution of density, for the ordinary distance of a comet's visibility. We, however, regard the change of diameter, as due to both these nodes of action, as best agreeing with the indications afforded by their tails. From the preceding remarks, it results that the density of the particles producing the nebulous envelope of a comet, renders the variations of diameter only approximate to the law of the radial stream; a comet's own electric energy, or the intensity of the escaping ether, may also modify this expression, and many other causes may be suggested. That the radial stream is the cause, in the way we have pointed out, is proved by the positions of the major axis of the short-period comet, making frequently nearly a right angle with the radius vector of the orbit in 1828. A soap
PREV.   NEXT  
|<   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175  
176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   >>  



Top keywords:

radial

 

stream

 

diameter

 

density

 

distances

 

escaping

 

luminous

 

inversely

 
radiation
 

electric


leaving

 

renders

 

diffused

 

particles

 

increase

 

centre

 

envelope

 
change
 

agreeing

 

diminished


diameters
 

afforded

 

faster

 

indications

 

action

 

distance

 

whichever

 

ordinary

 

visibility

 

diminution


allowance

 

temperature

 

regard

 
positions
 

proved

 
pointed
 

period

 

making

 

vector

 

radius


frequently

 
nebulous
 
variations
 
approximate
 

producing

 

results

 
preceding
 

remarks

 

energy

 

apparent