FREE BOOKS

Author's List




PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   >>  
an orbit as results from its own atomic density, and the resultant action of both the acting forces. From the law of density of the ether, the coma ought to be brightest and the radiating stream of the comet's nucleus strongest on the side of least pressure: from this cause, and the fact that the body of the comet affords a certain protection to the particles immediately behind it, there will be an interval between the comet and the tail less luminous, as is almost invariably observed. We thus have an explanation of the fact noticed by Sir John Herschel, "that the structure of a comet, as seen in section in the direction of its length, must be that of a hollow envelope of a parabolic form, enclosing near its vertex the nucleus or head." We have, also, a satisfactory explanation of the rapid formation of the tail; of its being wider and fainter at its extremity; of its occasional curvature; and of its greater length after perihelion than before. But, more especially may we point to the explanation which this theory gives of the fact, that, _ceteris paribus_, the long-period comets, when their perihelion distances are small, have tails of such exaggerated dimensions. A comet, whose mean distance is considerable, is supposed by the theory to be composed of elements less dense, and, during its long sojourn at its aphelion, it may be also supposed that it there receives continual accessions to its volume from the diffused siftings of the system, and from the scattered debris of other comets. On approaching the perihelion, the rapidity of the change in the density of the ether in a given time, depends on the eccentricity of the orbit, and so does the change of temperature; so that, from both causes, both the length of the tail and the brilliancy of the comet measurably depends on the magnitude of the period and of the eccentricity. If the nuclei of comets be gaseous as we suppose, and that the smallest stars are visible through them, it is an outrage on common sense, to refer that light, which renders a comet visible at noon-day, within six minutes of space of the sun itself, to the reflected light of the sun. When a small star has been seen through the nucleus of a comet, without any perceptible diminution of light, it indicates perfect transparency; but there can be no reflection from a perfectly transparent body, and therefore, a comet does not shine by reflected light. It is true that Arago discovered traces of polariz
PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   >>  



Top keywords:
density
 

nucleus

 

perihelion

 
length
 
comets
 
explanation
 

reflected

 

theory

 

eccentricity

 

depends


visible
 
change
 

supposed

 

period

 

brilliancy

 

measurably

 

temperature

 

acting

 

action

 

outrage


magnitude
 

smallest

 

resultant

 
suppose
 

gaseous

 
nuclei
 
forces
 

atomic

 

volume

 

diffused


siftings

 

accessions

 
continual
 
sojourn
 

aphelion

 
receives
 

system

 

scattered

 

common

 

rapidity


approaching

 

debris

 
reflection
 

perfectly

 
perfect
 
transparency
 

transparent

 

discovered

 
traces
 

polariz