FREE BOOKS

Author's List




PREV.   NEXT  
|<   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183  
184   185   186   187   188   189   190   191   192   193   >>  
if produced, would pass to the left of the sun, as seen from the earth: the force of the radial stream, however, will not allow this lagging of the tail, and it is straightened out by this force; but, being directed to the axis of the vortex, and not to the sun, it is not really in the plane of the orbit, but is seen in the direction of the upper tail depicted in the diagram at 3, and, if produced, would pass to the right of the sun, as seen from T. Now, there is an intermediate position of the tail, in which it will appear in the prolongation of the radius vector SC; this position is represented by the middle or central tail of the comet at 2, yet this is not in the plane of the orbit, it only appears to be, as may be readily understood by remembering that the earth at this time is under this plane, and the comet is seen at a considerable elevation above the plane of the ecliptic. When the comet's tail becomes directed to the axis of the vortex, or in the _apparent_ position of No. 3, the comet, rapidly careering on its way to the sun, again leaves the tail behind, and again it is strengthened out by the radial stream oscillating about the mean position at 2, as observed by Bessel. From this, it appears, that there is no necessity to make confusion worse confounded, by resorting to polar forces, which are about as intelligible as the foundations of the pillars of Atlas. [Illustration: Fig. 25] It may be objected that the continued action of the radial stream with that velocity we have contended for, ought to keep the tail invariably directed from the axis of the vortex; but, where there are two forces or tendencies, as in this case, analogy would teach us that a certain degree of oscillation is a necessary result. There may, also, be slight and transient changes in the direction of the radial stream. In the hurricane there are short and fitful blasts inclined to the general direction of the wind, which must arise from the inertia of the moving mass of atmosphere, causing temporary condensations and rarefactions. Be this as it may, we have assigned a cause which satisfies the phenomenon, without coming into collision with a single principle of celestial mechanics. Prof. Struve compared the tail of this comet to a flame, or "ray of fire shot out from the nucleus, as from some engine of artillery, and driven on one side by the wind." At the same time, he saw a second emanation nearly in the opposite direction. This l
PREV.   NEXT  
|<   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183  
184   185   186   187   188   189   190   191   192   193   >>  



Top keywords:
direction
 

position

 

stream

 
radial
 
vortex
 
directed
 

forces

 

appears

 

produced

 

blasts


inclined
 
fitful
 

hurricane

 

general

 

moving

 

invariably

 

inertia

 

slight

 

degree

 

analogy


tendencies
 

oscillation

 

atmosphere

 
result
 

transient

 
opposite
 
Struve
 

compared

 

mechanics

 

engine


artillery

 

nucleus

 
celestial
 
assigned
 

satisfies

 
rarefactions
 

driven

 

temporary

 

condensations

 

phenomenon


single

 

principle

 
emanation
 

collision

 
coming
 
causing
 

readily

 

central

 
middle
 

vector