FREE BOOKS

Author's List




PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   >>  
ded on the great length of the tail and the velocity of light, is sufficient to prove that these corruscations are not actually in the tail. Now, it is undoubtedly true, that as light travels less than two hundred thousand miles in a second, and a comet's tail is frequently one hundred millions long, it is impossible to see an instantaneous motion along the whole line of the tail; but granting that there are such flickerings in the tail as are described by so many, it must necessarily be, that these flickerings will be _visible_. It would be wonderful indeed, if a series of waves passing from the comet to the extremity of the tail, should have their phases so exactly harmonizing with their respective distances as to produce a uniform steady light from a light in rapid motion. The argument, therefore, proves too much, and as it is in the very nature of electric light thus to corruscate, as we see frequently in the northern lights, we must be permitted still to believe that not only the tails, but also the heads of comets do really corruscate as described. With respect to the direction of the tail, astronomers have been forced to abandon the antiquated notion, that the tail always pointed directly from the sun; yet they still pertinaciously cling to the idea, that although this is not always the case, the tail only deviates from this direction _in the plane of the orbit_. As this is a most important question, it is necessary formally to protest against such a conclusion. If the earth should happen to be in the plane of the comet's orbit and the tail appears in that plane, it must of course be in that plane _really_; but if the earth is not in the plane of the comet's orbit, the tail is not _necessarily_ in the same plane, whatever its apparent direction may indicate. It is true there is a tendency of every particle of the tail, moving under the restraining influence of the sun's attraction, to continue in the plane of the orbit; and in certain positions there is no oblique action arising from the force of the radial stream to cause it to deviate from that plane; yet in other positions of the comet, the action of the radial stream may be oblique, forcing it out of that plane, and still such a direction might be assigned to it as to make it conform. In the comet of 1843, P. Smythe observed a forked tail 25d long on March 3d, and from the end of the forked tail, and from its _north_ side, a streamer diverged at an angle of
PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   >>  



Top keywords:
direction
 

action

 

necessarily

 
oblique
 
radial
 
forked
 

stream

 

flickerings

 

positions

 

corruscate


frequently
 
hundred
 

motion

 

apparent

 

tendency

 

restraining

 

influence

 

attraction

 

moving

 

appears


particle
 

continue

 

happen

 
important
 

deviates

 
question
 
corruscations
 

conclusion

 

formally

 

protest


sufficient

 

observed

 
Smythe
 
diverged
 

streamer

 
conform
 

arising

 

length

 

velocity

 

deviate


assigned

 

forcing

 
undoubtedly
 

produce

 
uniform
 
steady
 

distances

 

respective

 
harmonizing
 

nature