FREE BOOKS

Author's List




PREV.   NEXT  
|<   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149  
150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   >>   >|  
quondam planet, and their mean distances must consequently vary also. There are some other peculiarities connecting the distances and densities, to which we shall devote a few words. In the primordial state of the system, when the nebulous masses agglomerated into spheres, the diameter of these nebulous spheres would be determined by the relation existing between the rotation of the mass, and the gravitating force at the centre; for as long as the centrifugal force at the equator exceeded the gravitating force, there would be a continual throwing off of matter from the equator, as fast as it was brought from the poles, until a balance was produced. It is also extremely probable, (especially if the elementary components of water are as abundant in other planets as we have reason to suppose them to be on the earth,) that the condensation of the gaseous planets into liquids and solids, was effected in a _brief period of time_,[38] leaving the lighter and more elastic substances as a nebulous atmosphere around globes of semi-fluid matter, whose diameters have never been much increased by the subsequent condensation of their gaseous envelopes. The extent of these atmospheres being (in the way pointed out) determined by the rotation, their subsequent condensation has not therefore changed the original rotation of the central globe by any appreciable quantity. The present rotation of the planets, is therefore competent to determine the former diameters of the nebulous planets, _i.e._, the limit where the present central force would be balanced by the centrifugal force of rotation. If we make the calculation for the planets, and take for the unit of each planet its present diameter, we shall find that they have condensed from their original nebulous state, by a quantity dependent on the distance, from the centre of the system; and therefore on the original temperature of the nebulous mass at that particular distance. Let us make the calculation for Jupiter and the earth, and call the original nebulous planets the nucleus of the vortex. We find the Equatorial diameter of Jupiter's nucleus in equatorial diameters of Jupiter = 2.21, and the equatorial diameter of the earth's nucleus, in equatorial diameters of the earth = 6.59. Now, if we take the original temperature of the nebulous planets to be inversely, as the squares of the distances from the sun, and their volumes directly as the cubes of the diameters in the unit of each,
PREV.   NEXT  
|<   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149  
150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   >>   >|  



Top keywords:
nebulous
 

planets

 

rotation

 
diameters
 
original
 
diameter
 

nucleus

 

equatorial

 

Jupiter

 

condensation


present
 
distances
 

distance

 

temperature

 

planet

 

matter

 

equator

 

calculation

 

quantity

 

central


subsequent
 

gaseous

 

centrifugal

 
determined
 

system

 
spheres
 
centre
 

gravitating

 

determine

 

volumes


competent

 

appreciable

 
changed
 
atmospheres
 

extent

 
directly
 

envelopes

 

pointed

 

dependent

 

Equatorial


vortex

 

condensed

 
balanced
 

quondam

 
squares
 
inversely
 

increased

 

atmosphere

 
connecting
 

brought