FREE BOOKS

Author's List




PREV.   NEXT  
|<   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  
160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   >>   >|  
every test applied to the phenomenon of light, adds additional strength to the undulatory theory, at the expense of the Newtonian theory of emission. As light occupies time in traversing space, it must follow from the theory that it does not come from the radiant point exactly in straight lines, inasmuch as the ether itself is in motion tangentially,--the velocity being in the sub-duplicate ratio of the distances from the sun inversely. May not that singular phenomenon,--the projection of a star on the moon's disc, at the time of an occultation,--be due to this curvature of the path of a ray of light, by considering that the rays from the moon have less intensity, but more mechanical momentum, and consequently more power to keep a straight direction? Let us explain: we have urged that light, as well as heat, is a mechanical effect of atomic motion, propagated through an elastic medium; that, _ceteris paribus_, the product of matter by its motion is ever a constant quantity for equal spaces throughout the universe,--in a word, that it is, and must necessarily be, a fundamental law of nature. All departures from this law are consequences of accidental arrangements, which can only be considered of temporary duration. Our knowledge of planetary matter requires the admission of differences in the density, form, and size of ultimate atoms, and, according to the above law, when the atoms are of uniform temperature or motion, the product of the matter of each by its motion, when reduced to the same space, will be constant. The momentum of two different atoms, therefore, we will consider equal, for the sake of illustration; yet this momentum is made up of two different elements,--matter and motion. Let us exaggerate the difference, and assign a ratio of 1000 to 1. Suppose a ball of iron of 1000 lbs., resting upon a horizontal plane, should be struck by another ball of 1 lb., having a motion of 1000 feet in a second, and, in a second case, should be struck by a ball of 1000 lbs., having a velocity of 1 foot per second, the momentum of each ball is similar; but experience proves that the motion impressed on the ball at rest is not similar; the ponderous weight and slow motion is far more effective in displacing this ball, for the reason that time is essential to the distribution of the motion. If the body to be struck be small as, for instance, a nail, a greater motion and less matter is more effective than much matter and little
PREV.   NEXT  
|<   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  
160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   >>   >|  



Top keywords:

motion

 
matter
 

momentum

 

struck

 

theory

 

mechanical

 
effective
 
similar
 

product

 
constant

velocity

 

phenomenon

 

straight

 

illustration

 

exaggerate

 

Newtonian

 

expense

 

assign

 
undulatory
 

Suppose


difference

 

elements

 

emission

 

uniform

 
ultimate
 

density

 
temperature
 

strength

 

occupies

 
traversing

reduced

 

horizontal

 

reason

 

essential

 

distribution

 

displacing

 
weight
 

greater

 

instance

 

ponderous


additional

 

differences

 

applied

 

experience

 
proves
 
impressed
 

resting

 

requires

 
direction
 

tangentially