FREE BOOKS

Author's List




PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  
id on an atomic solid. Analogy will only justify comparisons of like with like. The tangent of a comet's orbit, also, can only be tangential to the circular motion of the ether at and near perihelion, which is a very small portion of its period of revolution. As far as the tangential resistance is concerned, therefore, it matters little whether its motion be direct or retrograde. If a retrograde comet, of short period and small eccentricity, were discovered moving also near the central plane of the vortex, it would present a very serious objection, as being indicative of contrary motions in the nascent state of the system. There is no such case known. So, also, with the inclinations of the orbits; if these be great, it matters little whether the comet moves in one way or the other, as far as the tangential current of the vortex is concerned. Yet, when we consider the average inclination of the orbit, and not of its plane, we find that the major axes of nearly all known cometary orbits are very little inclined to the plane of the ecliptic. In the following table of all the periodical comets known, the inclination of the major axis of the orbit is calculated to the nearest degree; but all cometary orbits with very few exceptions, will be found to respect the ecliptic, and never to deviate far from that plane: +--------------------------------------------------------------------+ | Designations | Periodic | Inclination | Motion | Planetary | | of the Comets. | times. | of | in Orbit. | Intervals. | | | | Major Axes | | | |--------------------------------------------------------------------| |Encke | 1818 | 3 years. | 1d | Direct |Mars & Ceres.| |--------------------------------------------------------------------| |De Vico | 1814 | | 2 | Direct | | |Fayo | 1843 | | 4 | Direct | Ceres | |De Avrest| 1851 | From | 1 | Direct | | |Brorsen | 1846 | five | 7 | Direct | and | |Messier | 1766 | to | 0 | Direct | | |Clausen | 1743 | six | 0 | Direct | Jupiter. | |Pigott | 1783 | or | 4 | Direct | | |Pous | 1819 | seven | 3 | Direct | | |Biela | 1826 | years. |
PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  



Top keywords:
Direct
 

orbits

 

tangential

 
concerned
 
ecliptic
 
matters
 

vortex

 

inclination

 

retrograde

 

motion


cometary
 
period
 

deviate

 

Motion

 

Planetary

 

Designations

 

Periodic

 

Inclination

 

Comets

 

comets


degree
 

nearest

 

calculated

 
periodical
 

respect

 
exceptions
 
Brorsen
 

Jupiter

 

Pigott

 

Clausen


Messier

 

Avrest

 
Intervals
 
resistance
 

direct

 
revolution
 

portion

 

central

 

moving

 

discovered


eccentricity

 

perihelion

 
Analogy
 

atomic

 
justify
 
comparisons
 

circular

 

tangent

 
present
 

current