FREE BOOKS

Author's List




PREV.   NEXT  
|<   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163  
164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   >>   >|  
The expulsive force of the radial stream would thus drive off this cometary dust to distances in some inverse ratio of the density of the atoms; but, a limit would ultimately be reached, when gravitation would be relatively the strongest--the last force diminishing only as the squares of the distances, and the first diminishing in the compound ratio of the squares and the square roots of the distances. At the extreme verge of the system, this cometary matter would accumulate, and, by accumulation, would still further gather up the scattered atoms--the sweepings of the inner space--and, in this condensed form, would again visit the sun in an extremely elongated ellipse. It does not, however, follow, that all comets are composed of such unsubstantial materials. There may be comets moving in parabolas, or even in hyperbolas--bodies which may have been accumulating for ages in the unknown regions of space, far removed from the sun and stars, drifting on the mighty currents of the great ethereal ocean, and thus brought within the sphere of the sun's attraction; and these bodies may have no analogy to the periodical comets of our system, which last are those with which we are more immediately concerned. The periodical comets known are clearly arranged into two distinct classes--one having a mean distance between Saturn and Uranus, with a period of about seventy-five years, and another class, whose mean distance assigns their position between the smaller planets and Jupiter, having periods of about six years. These last may be considered the siftings of the smaller planets, and the first the refuse of the Saturnian system. In this light we may look for comets having a mean distance corresponding to the intervals of the planets, rather than to the distances of the planets themselves. One remarkable fact, however, to be observed in these bodies is, that all their motions are in the same direction as the planets, and, with one exception, there is no periodical comet positively known whose motion is retrograde. The exception we have mentioned is the celebrated comet of Halley, whose period is also about seventy-five years. In reasoning on the resistance of the ether, we must consider that the case can have very little analogy with the theory of projectiles in air; nor can we estimate the inertia of an infinitely divisible fluid, from its resisting influence on atomic matter, by a comparison of the resistance of an atomic flu
PREV.   NEXT  
|<   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163  
164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   >>   >|  



Top keywords:
comets
 

planets

 

distances

 
system
 
bodies
 
distance
 

periodical

 

matter

 

exception

 

smaller


period
 
resistance
 

cometary

 

atomic

 

analogy

 

seventy

 

squares

 

diminishing

 

classes

 

siftings


distinct
 

Saturnian

 

refuse

 
considered
 

assigns

 
position
 
Jupiter
 

Saturn

 

periods

 

Uranus


motions

 

theory

 
projectiles
 
estimate
 

resisting

 
influence
 

comparison

 

inertia

 

infinitely

 

divisible


reasoning

 

remarkable

 
intervals
 

observed

 
retrograde
 
mentioned
 

celebrated

 

Halley

 
motion
 

positively