FREE BOOKS

Author's List




PREV.   NEXT  
|<   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151  
152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   >>   >|  
er will undoubtedly tend to move with increasing velocity to the very centre of motion, obeying the great dynamical principle when unresisted. If resisted, the law will perhaps be modified; but in this case, its motion of translation will be converted into atomic motion or heat, according to the motion lost by the resistance of atomic matter. This question has a bearing on many geological phenomena. As regards the general effect, however, the present velocity of the ether circulating round the planets, may be considered much greater than the velocities of the planets themselves. PERTURBATIONS DUE TO THE ETHER. In these investigations it is necessary to bear in mind that the whole resisting power of the ether, in disturbing the planetary movements, is but small, in comparison with gravitation. We will, however, show that, in the case of the planets, there is a compensation continually made by this resistance, which leaves but a very small outstanding balance as a disturbing power. If we suppose all the planets to move in the central plane of the vortex in circular orbits, and the force of the radial stream, (or that portion which is not in accordance with the law of gravitation,) to be inversely as the square roots of the distances from the sun, it is evident, from what has been advanced, that an equilibrium could still obtain, by variations in the densities, distances and diameter of the planets. Supposing, again, that the planets still move in the same plane, but in elliptical orbits, and that they are in equilibrium at their mean distances, under the influence or action of the tangential current, the radial stream, and the density of the ether; we see that the force of the radial stream is too great at the perihelion, and too small at the aphelion. At the perihelion the planet is urged from the sun and at the aphelion towards the sun. The density and consequent momentum is also relatively too great at the perihelion, which also urges the planet from the sun, and at the aphelion, relatively too small, which urges the planet towards sun; and the law is the same in both cases, being null at the mean distance of the planet, at a maximum at the apsides; it is, consequently, as the cosine of the planet's eccentric anomaly at other distances, and is positive or negative, according as the planet's distance is above or below the mean. At the planet's mean distance, the circular velocity of the vortex is equal to the cir
PREV.   NEXT  
|<   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151  
152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   >>   >|  



Top keywords:
planet
 

planets

 

distances

 
motion
 
radial
 
distance
 

stream

 

velocity

 

aphelion

 

perihelion


disturbing
 
orbits
 

density

 

equilibrium

 

circular

 

vortex

 

gravitation

 

resistance

 

atomic

 

tangential


current
 

influence

 

elliptical

 
resisted
 

action

 
Supposing
 
advanced
 

evident

 

obtain

 

diameter


densities

 

variations

 
modified
 
unresisted
 

eccentric

 
cosine
 

maximum

 

apsides

 

anomaly

 

positive


negative

 

undoubtedly

 
centre
 

obeying

 
dynamical
 
principle
 

consequent

 

momentum

 
increasing
 

investigations