FREE BOOKS

Author's List




PREV.   NEXT  
|<   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153  
154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   >>   >|  
rding as their orbits are of less or greater eccentricity, and this in the ratio of the minor axis. On the other hand, under the influence of a force acting centripulsively in the inverse ratio of the square roots of the distances, we find the mean effect to be as the minor axis of the ellipse _directly_, so that two planets in orbits of different eccentricity, but having the same major axis, experience a different amount from the action of this radial stream, the least eccentric orbit being that which receives the greatest mean effect. By combining these two results, we get a ratio of equality; and, consequently, the action of the radial stream will be the same for the same orbit, whatever change may take place in the eccentricity, and the mean distance of the planet will be unchanged. A little consideration will also show that the effect of the centrifugal momentum due to the density of ether will also be the same by change of eccentricity; for the positive will always balance the negative effect at the greatest and least distances of the planet. The same remark applies to the effect of the tangential current, so that no change can be produced in the major axes of the planetary orbits by change of eccentricity, as an effect of the resistance of the ether. We will now suppose a planet's orbit to be inclined to the central plane of the vortex, and in this case, also, we find, that the action of the radial stream tends to increase the inclination in one quadrant as much as it diminishes it in the next quadrant, so that no change of inclination will result. But, if the inclination of the orbit be changed by planetary perturbations, the mean effect of the radial stream will also be changed, and this will tell on the major axis of the orbit, enlarging the orbit when the inclination diminishes, and contracting it when it increases. The change of inclination, however, must be referred to the central plane of the vortex. Notwithstanding the perfection of modern analysis, it is confessed that the recession of the moon's nodes does yet differ from the theory by its 350th part, and a similar discrepancy is found for the advance of the perigee.[40] This theory is yet far too imperfect to say that the action of the ethereal medium will account for these discrepancies; but it certainly wears a promising aspect, worthy the notice of astronomers. There are other minute discordancies between theory and observation in many astronomical
PREV.   NEXT  
|<   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153  
154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   >>   >|  



Top keywords:
effect
 

change

 

inclination

 
eccentricity
 
stream
 
radial
 

action

 

theory

 

planet

 

orbits


greatest
 
changed
 

planetary

 

central

 

distances

 

quadrant

 

vortex

 

diminishes

 

Notwithstanding

 

modern


analysis
 

perfection

 

confessed

 
perturbations
 

enlarging

 
increases
 
contracting
 

result

 

referred

 

promising


aspect

 

worthy

 
medium
 
account
 

discrepancies

 
notice
 

astronomers

 

observation

 

astronomical

 

discordancies


minute

 

ethereal

 
differ
 

similar

 
discrepancy
 
imperfect
 

perigee

 

advance

 
recession
 

eccentric