FREE BOOKS

Author's List




PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   >>   >|  
es greater at Saturn than at the earth, or as the square roots of the distances directly. BODES' LAW OF PLANETARY DISTANCES. Thus, in the solar vortex, there will be two polar currents meeting at the sun, and thence being deflected at right angles, in planes parallel to the central plane of the vortex, and strongest in that central plane. The velocity of expansion must, therefore, diminish from the divergence of the radii, as the distances increase; but in advancing along these planes, the ether of the vortex is continually getting more dense, which operate by absorption or condensation on the radial stream; so that the velocity is still more diminished, and this in the ratio of the square roots of the distances directly. By combining these two ratios, we find that the velocity of the radial stream will be in the ses-plicate ratio of the distances inversely. But the force of this stream is not as the velocity, but as the square of the velocity. The _force_ of the radial stream is consequently as the cubes of the distances inversely, from the axis of the vortex, reckoned in the same plane. If the ether, however, loses in velocity by the increasing density of the medium, it becomes also more dense; therefore the true force of the radial stream will be as its density and the square of its velocity, or directly as the square roots of the distances, and inversely as the cubes of the distances, or as the 2.5 power of the distances inversely. If we consider the central plane of the vortex as coincident with the plane of the ecliptic, and the planetary orbits, also, in the same plane; and had the force of the radial stream been inversely as the square of the distances, there could be no disturbance produced by the action of the radial stream. It would only counteract the gravitation of the central body by a certain amount, and would be exactly proportioned at all distances. As it is, there is an outstanding force as a disturbing force, which is in the inverse ratio of the square roots of the distances from the sun; and to this is, no doubt, owing, in part, the fact, that the planetary distances are arranged in the inverse order of their densities. Suppose two planets to have the same diameter to be placed in the same orbit, they will only be in equilibrium when their densities are equal. If their densities are unequal, the lighter planet will continually enlarge its orbit, until the force of the radial stream becomes
PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   >>   >|  



Top keywords:
distances
 

stream

 

square

 
radial
 
velocity
 
inversely
 

vortex

 

central

 

densities

 

directly


inverse
 
continually
 

density

 

planes

 

planetary

 

coincident

 

orbits

 

produced

 

disturbance

 

action


counteract
 

ecliptic

 

disturbing

 
diameter
 

Suppose

 
planets
 
equilibrium
 

enlarge

 

planet

 

lighter


unequal

 

arranged

 
proportioned
 
amount
 

outstanding

 
gravitation
 

ratios

 

deflected

 

meeting

 

angles


parallel

 

diminish

 
divergence
 

expansion

 
strongest
 
currents
 

Saturn

 

greater

 
DISTANCES
 

PLANETARY