FREE BOOKS

Author's List




PREV.   NEXT  
|<   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260  
261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   >>   >|  
verticil and crossed in the two successive ones. The stem is four-angled, each angle having a nerve. Each of these nerves, springing from the origin of a branch in one whorl, terminates in the interval which separates the point of origin of the two branches in the whorl next above it. In the deformed stem one of the nerves corresponds to the insertion of a branch, its neighbour is in the adjoining vacant space; hence it results that four nerves correspond to two branches and to two consecutive interspaces, and hence the analogy between a single normal internode provided with its two branches and its four nerves. What confirms this inference is that the nerve, which begins at the point of origin of a branch, after making one spiral turn round the stem, terminates in the interval that separates the two following branches, just as in a branch of the normal stem it ends in the upper whorl between the two next branches. The torsion, then, in this _Galium_ caused the separation of the two opposite branches of the same verticil, and placed them one above another, and this being reproduced in all the whorls, all the branches come to be arranged on the same longitudinal line. The leaves are susceptible of the same explanation; they are inserted in groups of three or four in one arc round the origin of each branch. In the malformation each series or group of four leaves, with its central branch, is equivalent to half a whorl of the natural plant with its axillary branch. In other words, the malformation consists in a torsion of the stem, which separates each whorl into two distinct halves; these half-whorls, with their axillary branches, are placed on a single longitudinal series one above another. This case is quoted at some length, as it is an admirable example of a very common form of malformation in these plants. In some parts of Holland where madder is cultivated a similar deformation is particularly frequent. The leaves, however, are not always grouped in the way in which they were described by M. Duchartre, but more commonly form a single continuous line; when arranged in leaf-whorls it generally happens that some of the leaves are turned downwards, while others are erect. It has been said that this condition occurs particularly frequently in plants growing in damp places. It is certainly true that spiral torsion of the stem is specially frequent in the species of _Equisetum_, most of which grow in such spots. In these p
PREV.   NEXT  
|<   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260  
261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   >>   >|  



Top keywords:

branches

 

branch

 
origin
 

leaves

 
nerves
 

whorls

 

single

 
malformation
 

separates

 

torsion


frequent

 

normal

 

longitudinal

 
verticil
 

arranged

 

terminates

 
series
 

axillary

 

plants

 

spiral


interval
 

admirable

 
quoted
 
length
 

common

 
similar
 

deformation

 

cultivated

 

madder

 

Holland


grouped

 

condition

 

occurs

 
frequently
 

growing

 

Equisetum

 

species

 

specially

 

places

 

commonly


Duchartre

 

continuous

 
turned
 

generally

 

analogy

 

internode

 

interspaces

 

consecutive

 

results

 
correspond