FREE BOOKS

Author's List




PREV.   NEXT  
|<   744   745   746   747   748   749   750   751   752   753   754   755   756   757   758   759   760   761   762   763   764   765   766   767   768  
769   770   771   772   773   774   775   776   777   778   779   780   781   782   783   784   785   786   787   788   789   790   791   792   793   >>   >|  
generates an area. If therefore a line OA = QT is turning about a fixed point O, always keeping parallel to QT, it will sweep over an area equal to that generated by the more general motion of QT. Let now (fig. 17) QT be placed on OA, and T be guided round the closed curve in the sense of the arrow. Q will describe a curve OSB. It may be made visible by putting a piece of "copying paper" under the hatchet. When T has returned to A the hatchet has the position BA. A line turning from OA about O kept parallel to QT will describe the circular sector OAC, which is equal in magnitude and sense to AOB. This therefore measures the area generated by the motion of QT. To make this motion cyclical, suppose the hatchet turned about A till Q comes from B to O. Hereby the sector AOB is again described, and again in the positive sense, if it is remembered that it turns about the tracer T fixed at A. The whole area now generated is therefore twice the area of this sector, or equal to OA. OB, where OB is measured along the arc. According to the theorem given above, this area also equals the area of the given curve less the area OSBO. To make this area disappear, a slight modification of the motion of QT is required. Let the tracer T be moved, both from the first position OA and the last BA of the rod, along some straight line AX. Q describes curves OF and BH respectively. Now begin the motion with T at some point R on AX, and move it along this line to A, round the curve and back to R. Q will describe the curve DOSBED, if the motion is again made cyclical by turning QT with T fixed at A. If R is properly selected, the path of Q will cut itself, and parts of the area will be positive, parts negative, as marked in the figure, and may therefore be made to vanish. When this is done the area of the curve will equal twice the area of the sector RDE. It is therefore equal to the arc DE multiplied by the length QT; if the latter equals 10 in., then 10 times the number of inches contained in the arc DE gives the number of square inches contained within the given figure. If the area is not too large, the arc DE may be replaced by the straight line DE. To use this simple instrument as a planimeter requires the possibility of selecting the point R. The geometrical theory here given has so far failed to give any rule. In fact, every line through any point in the curve contains such a point. The analytical theory of the inventor, which is very simil
PREV.   NEXT  
|<   744   745   746   747   748   749   750   751   752   753   754   755   756   757   758   759   760   761   762   763   764   765   766   767   768  
769   770   771   772   773   774   775   776   777   778   779   780   781   782   783   784   785   786   787   788   789   790   791   792   793   >>   >|  



Top keywords:

motion

 

sector

 

describe

 

hatchet

 

generated

 

turning

 
equals
 

figure

 
parallel
 

contained


inches

 
tracer
 
positive
 
number
 

cyclical

 
theory
 

straight

 
position
 

properly

 

selected


marked
 

DOSBED

 

negative

 

multiplied

 

generates

 

length

 

vanish

 

failed

 
inventor
 

analytical


replaced

 

square

 

simple

 

selecting

 

geometrical

 

possibility

 

requires

 

instrument

 
planimeter
 
magnitude

circular
 

returned

 
measures
 
turned
 

suppose

 
general
 

closed

 

guided

 

visible

 
copying