FREE BOOKS

Author's List




PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   >>   >|  
lock at all, but would strike the pallet on the impulse instead of on the locking face. Again, such a change might cause the jewel pin to strike the horn of the fork, as indicated at the dotted line _m_, Fig. 99. Dealing with such and similar abstractions by mental process requires the closest kind of reasoning; and if we attempt to delineate all the complications which follow even such a small change, we will find the job a lengthy one. But with a large model having adjustable parts we provide ourselves with the means for the very best practical solution, and the workman who makes and manipulates such a model will soon master the lever escapement. QUIZ PROBLEMS IN THE DETACHED LEVER ESCAPEMENT. Some years ago a young watchmaker friend of the writer made, at his suggestion, a model of the lever escapement similar to the one described, which he used to "play with," as he termed it--that is, he would set the fork and pallets (which were adjustable) in all sorts of ways, right ways and wrong ways, so he could watch the results. A favorite pastime was to set every part for the best results, which was determined by the arc of vibration of the balance. By this sort of training he soon reached that degree of proficiency where one could no more puzzle him with a bad lever escapement than you could spoil a meal for him by disarranging his knife, fork and spoon. Let us, as a practical example, take up the consideration of a short fork. To represent this in our model we take a lever as shown at Fig. 99, with the elongated slot for the pallet staff at _g_. To facilitate the description we reproduce at Fig. 102 the figure just mentioned, and also employ the same letters of reference. We fancy everybody who has any knowledge of the lever escapement has an idea of exactly what a "short fork" is, and at the same time it would perhaps puzzle them a good deal to explain the difference between a short fork and a roller too small. [Illustration: Fig. 102] [Illustration: Fig. 103] In our practical problems, as solved on a large escapement model, say we first fit our fork of the proper length, and then by the slot _g_ move the lever back a little, leaving the bankings precisely as they were. What are the consequences of this slight change? One of the first results which would display itself would be discovered by the guard pin failing to perform its proper functions. For instance, the guard pin pushed inward against the r
PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   >>   >|  



Top keywords:
escapement
 

results

 

practical

 
change
 
Illustration
 
strike
 

proper

 

adjustable

 

pallet

 

similar


puzzle
 
reference
 

employ

 

letters

 

description

 

consideration

 

disarranging

 

represent

 

reproduce

 

figure


facilitate
 

elongated

 

mentioned

 
slight
 

consequences

 
display
 
leaving
 

bankings

 

precisely

 

discovered


pushed

 

instance

 
failing
 
perform
 

functions

 
explain
 

difference

 

roller

 

length

 

solved


problems

 

knowledge

 
provide
 

lengthy

 
locking
 
solution
 

impulse

 

PROBLEMS

 
master
 

workman