FREE BOOKS

Author's List




PREV.   NEXT  
|<   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146  
147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>  
eel tooth we draw the line _C d_, from the point of the escape-wheel tooth resting on the locking stone shown at _C_ at an angle of twenty-eight degrees to radial line _C k_. We have already discussed how to locate and plant the center of the balance staff. We shall not show in this drawing the angular motion of the escape wheel, but delineate at the radial lines _c e_ and _c f_ of the arc of the balance during the extent of its implication with the periphery of the escape wheel, which arc is one of about forty-eight degrees. Of this angle but forty-three degrees is attempted to be utilized for the purpose of impulse, five degrees being allowed for the impulse jewel to pass inside of the arc of periphery of the escape wheel before the locking jewel releases the tooth of the escape wheel resting upon it. At this point it is supposed the escape wheel attacks the impulse jewel, because, as we just explained, the locking jewel has released the tooth engaging it. Now, if the train had no weight, no inertia to overcome, the escape wheel tooth _A^2_ would move forward and attack the impulse pallet instantly; but, in fact, as we have already explained, there will be an appreciable time elapse before the tooth overtakes the rapidly-moving impulse jewel. It will, of course, be understood that the reference letters used herein refer to the illustrations that have appeared on preceding pages. If we reason carefully on the matter, we will readily comprehend that we can move the locking jewel, i.e., set it so the unlocking will take place in reality before the impulse jewel has passed through the entire five degrees of arc embraced between the radial lines _c e_ and _c g_, Fig. 141, and yet have the tooth attack the jewel after the five degrees of arc. In practice it is safe to set the discharging jewel _h_ so the release of the held tooth _A^1_ will take place as soon as the tooth _A^2_ is inside the principal line of the escape wheel. As we previously explained, the contact between _A^2_ and the impulse jewel _i_ would not in reality occur until the said jewel _i_ had fully passed through the arc (five degrees) embraced between the radial lines _c e_ and _c g_. At this point we will explain why we drew the front fan of the escape-wheel teeth at the angle of twenty-eight degrees. If the fan of impulse jewel _i_ is set radial to the axis of the balance, the engagement of the tooth _A^2_ would be at a disadvantage if it took pla
PREV.   NEXT  
|<   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146  
147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>  



Top keywords:
escape
 

degrees

 

impulse

 
radial
 
locking
 
balance
 

explained

 

embraced

 

attack

 

passed


reality
 
inside
 

periphery

 

resting

 

twenty

 

engagement

 

comprehend

 

matter

 

readily

 

disadvantage


letters
 

reference

 

illustrations

 
appeared
 

reason

 
preceding
 
carefully
 

unlocking

 

release

 

discharging


principal

 

explain

 
previously
 
entire
 

contact

 
practice
 

released

 

extent

 

delineate

 

angular


motion

 

implication

 
drawing
 

discussed

 
center
 
locate
 

attempted

 

utilized

 
instantly
 

pallet