FREE BOOKS

Author's List




PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>  
adii as the impulse roller. To locate the center from which the arc which defines the back of the teeth is swept, we halve the space between the teeth _A^2_ and _a^4_ and establish the point _n_, Fig. 141, and with our dividers set to sweep the circle representing the impulse roller, we sweep an arc passing the point of the tooth _A^3_ and _u_, thus locating the center _w_. From the center _k_ of the escape wheel we sweep a complete circle, a portion of which is represented by the arc _w v_. For delineating other teeth we set one leg of our dividers to agree with the point of the tooth and the other leg on the circle _w v_ and produce an arc like _z u_. ORIGINAL DESIGNING OF THE ESCAPEMENT. On delineating our chronometer escapement shown at Fig. 141 we have followed no text-book authority, but have drawn it according to such requirements as are essential to obtain the best results. An escapement of any kind is only a machine, and merely requires in its construction a combination of sound mechanical principles. Neither Saunier nor Britten, in their works, give instructions for drawing this escapement which will bear close analysis. It is not our intention, however, to criticise these authors, except we can present better methods and give correct systems. TANGENTIAL LOCKINGS. It has been a matter of great contention with makers of chronometer and also lever escapements as to the advantages of "tangential lockings." By this term is meant a locking the same as is shown at _C_, Fig. 141, and means a detent planted at right angles to a line radial to the escape-wheel axis, said radial line passing through the point of the escape-wheel tooth resting on the locking jewel. In escapements not set tangential, the detent is pushed forward in the direction of the arrow _x_ about half a tooth space. Britten, in his "Hand-Book," gives a drawing of such an escapement. We claim the chief advantage of tangential locking to lie in the action of the escape-wheel teeth, both on the impulse stone and also on the locking stone of the detent. Saunier, in his "Modern Horology," gives the inclination of the front fan of the escape-wheel teeth as being at an angle of twenty-seven degrees to a radial line. Britten says twenty degrees, and also employs a non-tangential locking. Our drawing is on an angle of twenty-eight degrees, which is as low as is safe, as we shall proceed to demonstrate. For establishing the angle of an escape-wh
PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>  



Top keywords:
escape
 

locking

 

escapement

 
tangential
 
twenty
 
circle
 

detent

 

Britten

 

drawing

 

radial


impulse
 
center
 

degrees

 

delineating

 

escapements

 

chronometer

 

Saunier

 

dividers

 

roller

 

passing


TANGENTIAL
 

systems

 

planted

 
methods
 

angles

 
LOCKINGS
 
correct
 

makers

 

lockings

 

matter


advantages

 

contention

 
employs
 
Modern
 

Horology

 
inclination
 

demonstrate

 

establishing

 

proceed

 

action


forward

 

direction

 
pushed
 

resting

 
advantage
 
present
 

combination

 

produce

 
portion
 

represented