FREE BOOKS

Author's List




PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   >>  
ce prior to this jewel passing through an arc of five degrees inside the periphery of the escape wheel. It will be evident on thought that if an escape-wheel tooth engaged the impulse stone before the five-degrees angle had passed, the contact would not be on its flat face, but the tooth would strike the impulse jewel on its outer angle. A continued inspection will also reveal the fact that in order to have the point of the tooth engage the flat surface of the impulse pallet the impulse jewel must coincide with the radial line _c g_. If we seek to remedy this condition by setting the impulse jewel so the face is not radial, but inclined backward, we encounter a bad engaging friction, because, during the first part of the impulse action, the tooth has to slide up the face of the impulse jewel. All things considered, the best action is obtained with the impulse jewel set so the acting face is radial to the balance staff and the engagement takes place between the tooth and the impulse jewel when both are moving with equal velocities, i.e., when the balance is performing with an arc (or motion) of 11/4 revolutions or 225 degrees each way from a point of rest. Under such conditions the actual contact will not take place before some little time after the impulse jewel has passed the five-degree arc between the lines _c e_ and _c g_. THE DROP AND DRAW CONSIDERED. Exactly how much drop must be allowed from the time the tooth leaves the impulse jewel before the locking tooth engages the locking jewel will depend in a great measure on the perfection of workmanship, but should in no instance be more than what is absolutely required to make the escapement safe. The amount of draw given to the locking stone _c_ is usually about twelve degrees to the radial line _k a_. Much of the perfection of the chronometer escapement will always depend on the skill of the escapement adjuster and not on the mechanical perfection of the parts. The jewels all have to be set by hand after they are made, and the distance to which the impulse jewel protrudes beyond the periphery of the impulse roller is entirely a matter for hand and eye, but should never exceed 2/1000". After the locking jewel _c_ is set, we can set the foot _F_ of the detent _D_ forward or back, to perfect and correct the engagement of the escape-wheel teeth with the impulse roller _B_. If we set this too far forward, the tooth _A^3_ will encounter the roller while the tooth
PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   >>  



Top keywords:
impulse
 

locking

 

degrees

 
radial
 
escapement
 
roller
 

escape

 

perfection

 

action

 

encounter


depend
 
forward
 

engagement

 

balance

 

contact

 

passed

 

periphery

 

inside

 

amount

 

twelve


chronometer
 

required

 

evident

 
measure
 

engages

 
thought
 
allowed
 

leaves

 

workmanship

 

absolutely


instance

 

mechanical

 
exceed
 
perfect
 

detent

 
matter
 

jewels

 

correct

 

passing

 

protrudes


distance

 

adjuster

 
friction
 

strike

 
acting
 
obtained
 

things

 

considered

 
engaging
 

remedy