FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  
et one leg of our dividers or compasses when we sweep the peripheral arc which we use in our delineations; second, making three arcs in brass or other sheet metal, viz.: the periphery of the escape wheel, the arc passing through the center of the chord of the arc of the impulse face of the tooth, and the arc passing through the point of the escape-wheel tooth. Of these plans we favor the one of sticking a bit of cardboard on the drawing board outside of the paper on which we are making our drawing. [Illustration: Fig. 132] At Fig. 132 we show the position and relation of the several parts just as the tooth passes into the shell of the cylinder, leaving the lip of the cylinder just as the tooth parted with it. The half shell of the cylinder as shown occupies 196 degrees or the larger arc embraced between the radial lines _k_ and _l_. In drawing the entrance lip the acting face is made almost identical with a radial line except to round the corners for about one-third the thickness of the cylinder shell. No portion, however, of the lip can be considered as a straight line, but might be described as a flattened curve. [Illustration: Fig. 133] A little study of what would be required to get the best results after making such a drawing will aid the pupil in arriving at the proper shape, especially when he remembers that the thickness of the cylinder shell of a twelve-line watch is only about five one-thousandths of an inch. But because the parts are small we should not shirk the problem of getting the most we possibly can out of a cylinder watch. The extent of arc between the radial lines _k f_, as shown in Fig. 132, is four degrees. Although in former drawings we showed the angular extent added as six degrees, as we show the lip _m_ in Fig. 132, two degrees are lost in rounding. The space _k f_ on the egress or exit side is intended to be about four degrees, which shows the extent of lock. We show at Fig. 133 the tooth _D_ just having passed out of the cylinder, having parted with the exit lip _p_. In making this drawing we proceed as with Fig. 132 by establishing a center for our radius of 10" outside of our drawing paper and drawing the line _A A_ to such center and sweeping the arcs _a b c_. We establish the point _e_, which represents the center of our cylinder, as before. We take the space to represent the radial extent of the outside of our cylinder in our dividers and from _e_ as a center sweep a fine p
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  



Top keywords:
cylinder
 

drawing

 

degrees

 
center
 
radial
 
extent
 

making

 

dividers

 

thickness

 

parted


passing
 
Illustration
 

escape

 

problem

 

twelve

 

remembers

 

proper

 

thousandths

 

possibly

 

represents


radius
 

intended

 

egress

 
arriving
 

rounding

 
establishing
 
passed
 

proceed

 

sweeping

 

showed


drawings

 

Although

 
angular
 
establish
 

represent

 
corners
 

cardboard

 

sticking

 

position

 

leaving


passes

 

relation

 
impulse
 

delineations

 
peripheral
 
compasses
 

periphery

 

occupies

 
flattened
 

results