FREE BOOKS

Author's List




PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>  
0) the diameter of drawn escape wheel is to our real escape wheel so is the measured distance on our drawing to the real distance in the chronometer we are constructing. It is well to use great care in the large drawing to obtain great accuracy, and make said large drawing on a sheet of metal. This course is justified by the degree of perfection to which measuring tools have arrived in this day. It will be found on measurement of the arc of the circle _B_, embraced between the intersections _e e^2_, that it is about forty-eight degrees. How much of this we can utilize in our escapement will depend very much on the perfection and accuracy of construction. [Illustration: Fig. 139] We show at Fig. 140 three teeth of an escape wheel, together with the locking jewel _E_ and impulse jewel _D_. Now, while theoretically we could commence the impulse as soon as the impulse jewel _D_ was inside of the circle representing the periphery of the escape wheel, still, in practical construction, we must allow for contingencies. Before it is safe for the escape wheel to attack the impulse jewel, said jewel must be safely inside of said escape wheel periphery, in order that the attacking tooth shall act with certainty and its full effect. A good deal of thought and study can be bestowed to great advantage on the "action" of a chronometer escapement. Let us examine the conditions involved. We show in Fig. 140 the impulse jewel _D_ just passing inside the circle of the periphery of the escape wheel. Now the attendant conditions are these: The escape wheel is locked fast and perfectly dead, and in the effort of unlocking it has to first turn backward against the effort of the mainspring; the power of force required for this effort is derived from the balance in which is stored up, so to speak, power from impulses imparted to the balance by former efforts of the escape wheel. In actual fact, the balance at the time the unlocking takes place is moving with nearly its greatest peripheral velocity and, as stated above, the escape wheel is at rest. Here comes a very delicate problem as regards setting the unlocking or discharging jewel. Let us first suppose we set the discharging jewel so the locking jewel frees its tooth at the exact instant the impulse jewel is inside the periphery of the escape wheel. As just stated, the escape wheel is not only dead but actually moving back at the time the release takes place. Now, it is evident that
PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>  



Top keywords:
escape
 

impulse

 

periphery

 
inside
 
balance
 
unlocking
 

circle

 

drawing

 

effort

 

moving


construction
 
escapement
 

conditions

 

locking

 

distance

 

accuracy

 

chronometer

 

perfection

 

discharging

 

stated


instant
 

mainspring

 

backward

 
perfectly
 

examine

 
release
 
evident
 

action

 

involved

 

passing


locked

 

attendant

 
efforts
 
delicate
 

peripheral

 
greatest
 

advantage

 

velocity

 

actual

 

imparted


problem

 

suppose

 
required
 

derived

 
setting
 
impulses
 

stored

 

measurement

 
arrived
 

embraced