FREE BOOKS

Author's List




PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  
encil line, represented by the dotted line _t_ in our drawing; and where this circle intersects the arc _a_ we name it the point _s_; and it is at this point the heel of our escape-wheel tooth must part with the exit lip of the cylinder. From _e_ as a center and through the point _s_ we draw the line _e l''_. With our dividers set to the radius of any convenient arc which we have divided into degrees, we sweep the short arc _d'_. The intersection of this arc with the line _e l''_ we name the point _u_; and from _e_ as a center we draw the radial line _e u f'_. We place the letter _f''_ in connection with this line because it (the line) bears the same relations to the half shell of the cylinder shown in Fig. 133 that the line _f_ does to the half shell (_D_) shown in Fig. 132. We draw the line _f'' f'''_, Fig. 133, which divides the cylinder into two segments of 180 degrees each. We take the same space in our dividers with which we swept the interior of the cylinder in Fig. 132 and sweep the circle _v_, Fig. 133. From _e_ as a center we sweep the short arc _d''_, Fig. 133, and from its intersection of the line _f''_ we lay off six degrees on said arc _d''_ and draw the line _e' k''_, which defines the angular extent of our entrance lip to the half shell of the cylinder in Fig. 133. We draw the full lines of the cylinder as shown. We next delineate the heel of the tooth which has just passed out of the cylinder, as shown at _D'_, Fig. 133. We now have a drawing showing the position of the half shell of the cylinder just as the tooth has passed the exit lip. This drawing also represents the position of the half shell of the cylinder when the tooth rests against it on the outside. If we should make a drawing of an escape-wheel tooth shaped exactly as the one shown at Fig. 132 and the point of the tooth resting at _x_, we would show the position of a tooth encountering the cylinder after a tooth which has been engaged in the inside of the shell has passed out. By following the instructions now given, we can delineate a tooth in any of its relations with the cylinder shell. DELINEATING AN ESCAPE-WHEEL TOOTH WHILE IN ACTION. We will now go through the operation of delineating an escape-wheel tooth while in action. The position we shall assume is the one in which the cylinder and escape-wheel tooth are in the relation of the passage of half the impulse face of the tooth into the cylinder. To do this is simple enough: We
PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  



Top keywords:
cylinder
 

position

 

drawing

 
escape
 
degrees
 
passed
 

center

 

delineate

 

circle


relations

 
intersection
 
dividers
 

engaged

 

resting

 

encountering

 

simple

 

shaped

 

inside


operation

 

ACTION

 
relation
 

assume

 

action

 
delineating
 

DELINEATING

 
instructions
 
ESCAPE

passage

 

impulse

 

letter

 

radial

 

divided

 
convenient
 
connection
 

divides

 
radius

dotted

 

represented

 

intersects

 

segments

 

entrance

 

extent

 
angular
 

defines

 
represents

showing
 

interior