FREE BOOKS

Author's List




PREV.   NEXT  
|<   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  
120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   >>   >|  
uch impulse is, as previously stated, termed the "lifting angle." This "lifting angle" is by horological writers again divided into real and apparent lifts. This last division is only an imaginary one, as the real lift is the one to be studied and expresses the arc through which the impulse face of the tooth impels the balance during the act of escaping, and so, as we shall subsequently show, should no more be counted than in the detached lever escapement, where a precisely similar condition exists, but is never considered or discussed. We shall for the present take no note of this lifting angle, but confine ourselves to the problem just named, of so arranging and designing our escape-wheel teeth and cylinder that each half of the tooth space shall give equal impulses to the balance with the minimum of drop. To do this we will make a careful drawing of an escape-wheel tooth and cylinder on an enlarged scale; our method of making such drawings will be on a new and original system, which is very simple yet complete. DRAWING THE CYLINDER ESCAPEMENT. All horological--and for that matter all mechanical--drawings are based on two systems of measurements: (1) Linear extent; (2) angular movement. For the first measurement we adopt the inch and its decimals; for the second we adopt degrees, minutes and seconds. For measuring the latter the usual plan is to employ a protractor, which serves the double purpose of enabling us to lay off and delineate any angle and also to measure any angle obtained by the graphic method, and it is thus by this graphic method we propose to solve very simply some of the most abstruce problems in horological delineations. As an instance, we propose to draw our cylinder escapement with no other instruments than a steel straight-edge, showing one-hundredths of an inch, and a pair of dividers; the degree measurement being obtained from arcs of sixty degrees of radii, as will be explained further on. In describing the method for drawing the cylinder escapement we shall make a radical departure from the systems usually laid down in text-books, and seek to simplify the formulas which have heretofore been given for such delineations. In considering the cylinder escapement we shall pursue an analytical course and strive to build up from the underlying principles. In the drawings for this purpose we shall commence with one having an escape wheel of 10" radius, and our first effort will be the primary
PREV.   NEXT  
|<   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  
120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   >>   >|  



Top keywords:

cylinder

 

escapement

 

method

 
lifting
 

escape

 

horological

 

drawings

 

propose

 
delineations
 

graphic


obtained

 
drawing
 

systems

 
degrees
 

purpose

 

impulse

 

measurement

 
balance
 

decimals

 

abstruce


problems

 
simply
 

minutes

 

enabling

 

double

 

serves

 
delineate
 

protractor

 
measuring
 

employ


measure

 

seconds

 

degree

 

pursue

 
analytical
 
heretofore
 
simplify
 

formulas

 

strive

 

radius


effort

 

primary

 
commence
 

underlying

 

principles

 

showing

 
hundredths
 

straight

 

instance

 

instruments