FREE BOOKS

Author's List




PREV.   NEXT  
|<   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124  
125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   >>   >|  
e of our escape-wheel tooth, Fig. 129. There is no reason why we should take twenty-degrees for the angle _k e l_ except that the practical construction of the larger sizes of cylinder watches has established the fact that this is about the right angle to employ, while in smaller watches it frequently runs up as high as twenty-five. Although the cylinder is seemingly a very simple escapement, it is really a very abstruce one to follow out so as to become familiar with all of its actions. THE CYLINDER PROPER CONSIDERED. [Illustration: Fig. 131] We will now proceed and consider the cylinder proper, and to aid us in understanding the position and relation of the parts we refer to Fig. 131, where we repeat the circles _d_ and _h_, shown in Fig. 130, which represents the inside and outside of the cylinder. We have here also repeated the line _f_ of Fig. 130 as it cuts the cylinder in half, that is, divides it into two segments of 180 degrees each. If we conceive of a cylinder in which just one-half is cut away, that is, the lips are bounded by straight radial lines, we can also conceive of the relation and position of the parts shown in Fig. 130. The first position of which we should take cognizance is, the tooth _D_ is moved back to the left so as to rest on the outside of our cylinder. The cylinder is also supposed to stand so that the lips correspond to the line _f_. On pressing the tooth _D_ forward the incline of the tooth would attack the entrance lip of the cylinder at just about the center of the curved impulse face, imparting to the cylinder twenty degrees of angular motion, but the point of the tooth at _d_ would exactly encounter the inner angle of the exit lip, and of course the cylinder would afford no rest for the tooth; hence, we see the importance of not cutting away too much of the half shell of the cylinder. But before we further consider the action of the tooth _D_ in its action as it passes the exit lip of the cylinder we must finish with the action of the tooth on the entrance lip. A very little thought and study of Fig. 130 will convince us that the incline of the tooth as it enters the cylinder will commence at _t_, Fig. 130, but at the close of the action the tooth parts from the lip on the inner angle. Now it is evident that it would require greater force to propel the cylinder by its inner angle than by the outer one. To compensate for this we round the edge of the entrance lip so that t
PREV.   NEXT  
|<   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124  
125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   >>   >|  



Top keywords:

cylinder

 

action

 

entrance

 
position
 

degrees

 

twenty

 

relation

 

incline

 
conceive
 

watches


motion

 
imparting
 

angular

 
afford
 

encounter

 

escape

 

center

 
correspond
 

supposed

 

pressing


forward

 
curved
 

reason

 

attack

 

impulse

 

importance

 
evident
 

require

 
greater
 

commence


propel

 

compensate

 

enters

 

convince

 
cutting
 
passes
 
thought
 

finish

 

cognizance

 

understanding


proper

 

proceed

 
frequently
 

circles

 

repeat

 

smaller

 
Although
 

escapement

 

familiar

 

abstruce