FREE BOOKS

Author's List




PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  
below its intersection with the line _B b_. We do not show this line in the drawing, from the fact that it comes so near to _B b'_ that it would confuse the reader. Above the arc _a_ on the arc _k_ at five degrees from the point _n_ we establish the point _l_, by laying off five degrees on the arc _j_ above the intersection of the line _B b_ with _j_. The point _l_, Fig. 90, establishes where the outer angle of the tooth will pass the arc _k_ to give five degrees of angular motion to the lever. From _A_ as a center we sweep the arc _m_, passing through the point _l_. The intersection of the arc _m_ with the line _A h_ we call the point _r_, and by drawing the right line _r f_ we delineate the impulse face of the tooth. On the arc _o_ and one degree below its intersection with the line _B b_ we establish the point _t_, and by drawing a right line from _t_ to _s_ we delineate the impulse face of our entrance pallet. "ACTION" DRAWINGS. One great fault with most of our text books on horology lies in the fact that when dealing with the detached lever escapement the drawings show only the position of the pallets when locked, and many of the conditions assumed are arrived at by mental processes, without making the proper drawings to show the actual relation of the parts at the time such conditions exist. For illustration, it is often urged that there is a time in the action of the club-tooth lever escapement action when the incline on the tooth and the incline on the pallet present parallel surfaces, and consequently endure excessive friction, especially if the oil is a little thickened. We propose to make drawings to show the exact position and relation of the entrance pallet and tooth at three intervals viz: (1) Locked; (2) the position of the parts when the lever has performed one-half of its angular motion; (3) when half of the impulse face of the tooth has passed the pallet. The position of the entrance pallet when locked is sufficiently well shown in Fig. 90 to give a correct idea of the relations with the entrance pallet; and to conform to statement (2), as above. We will now delineate the entrance pallet, not in actual contact, however, with the pallet, because if we did so the lines we employed would become confused. The methods we use are such that _we can delineate with absolute correctness either a pallet or tooth at any point in its angular motion_. We have previously given instructions for drawing t
PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  



Top keywords:

pallet

 

entrance

 

position

 
delineate
 

intersection

 

drawing

 

drawings

 

angular

 
impulse
 

degrees


motion

 
incline
 

locked

 
escapement
 

conditions

 

establish

 

action

 
relation
 

actual

 

friction


intervals

 
excessive
 

present

 

endure

 

propose

 

parallel

 
thickened
 

surfaces

 
absolute
 

correctness


methods

 

confused

 

instructions

 

previously

 
employed
 
correct
 
sufficiently
 

passed

 

performed

 

relations


contact

 

conform

 
statement
 

Locked

 

passing

 

center

 
degree
 

confuse

 

reader

 

establishes