FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
into use in exceptional cases, and if the watch was lying still would theoretically never be required. Where fork and pallets are poised on their arbor, pocket motion (except torsional) should but very little affect the fork and pallet action of a watch, and torsional motion is something seldom brought to act on a watch to an extent to make it worthy of much consideration. In the double-roller action which we shall consider, we shall adopt three-fifths of the pitch diameter of the jewel-pin action as the proper size. Not but what the proportions given by Grossmann will do good service; but we adopt the proportions named because it enables us to use a light fork, and still the friction of the guard point on the roller is but little more than where a guard roller of half the diameter of the acting roller is employed. The fork action we shall consider at present is ten degrees, but subsequently we shall consider a double-roller action in which the fork and pallet action is reduced to eight degrees. We shall conceive the play between the guard point and the safety roller as one degree, which will leave half a degree of lock remaining in action on the engaged pallet. THEORETICAL ACTION OF DOUBLE ROLLER CONSIDERED. In the drawing at Fig. 81 we show a diagram of the action of the double-roller escapement. The small circle at _A_ represents the center of the pallet staff, and the one at _B_ the center of the balance staff. The radial lines _A d_ and _A d'_ represent the arc of angular motion of fork action. The circle _b b_ represents the pitch circle of the jewel pin, and the circle at _c c_ the periphery of the guard or safety roller. The points established on the circle _c c_ by intersection of the radial lines _A d_ and _A d'_ we will denominate the points _h_ and _h'_. It is at these points the end of the guard point of the fork will terminate. In construction, or in delineating for construction, we show the guard enough short of the points _h h'_ to allow the fork an angular motion of one degree, from _A_ as a center, before said point would come in contact with the safety roller. [Illustration: Fig. 81] We draw through the points _h h'_, from _B_ as a center, the radial lines _B g_ and _B g'_. We measure this angle by sweeping the short arc _i_ with any of the radii we have used for arc measurement in former delineations, and find it to be a trifle over sixty degrees. To give ourselves a practical object less
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:

roller

 

action

 

points

 
circle
 

center

 

pallet

 

motion

 

degrees

 
safety
 

double


degree

 
radial
 

proportions

 
construction
 

diameter

 

represents

 

angular

 
torsional
 

represent

 

denominate


balance

 
diagram
 

escapement

 

periphery

 

exceptional

 

established

 
intersection
 

delineations

 
measurement
 

trifle


practical

 

object

 

delineating

 

terminate

 
contact
 
Illustration
 
sweeping
 

measure

 

consideration

 

worthy


extent

 

fifths

 
Grossmann
 

proper

 

brought

 

pocket

 
poised
 

pallets

 

seldom

 

theoretically