FREE BOOKS

Author's List




PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   >>   >|  
have been drawn tangent to the circle _s_, which represents the locking angle of the teeth. This would have placed the center of the pallet staff farther in, or closer to the wheel. Any person can see at a glance that the pallets as delineated are not tangential in a true sense. [Illustration: Fig. 85] We have previously considered engaging friction and also repeatedly have spoken of tangential lockings, but will repeat the idea of tangential lockings at Fig. 85. A tangential locking is neutral, or nearly so, as regards engaging friction. For illustration we refer to Fig. 85, where _A_ represents the center of an escape wheel. We draw the radial lines _A y_ and _A z_ so that they embrace sixty degrees of the arcs _s_ or _t_, which correspond to similar circles in Fig. 84, and represent the extreme extent of the teeth and likewise the locking angle of such teeth. In fact, with the club-tooth escapement all that part of a tooth which extends beyond the line _s_ should be considered the same as the addendum in gear wheels. Consequently, a tangential locking made to coincide with the center of the impulse plane, as recommended by Saunier, would require the pallet staff to be located at _C'_ instead of _C_, as he draws it. If the angle _k'_ of the tooth _k_ in Fig. 84 was extended outward from the center _A_ so it would engage or rest on the locking face of the entrance pallet as shown at Fig. 84, then the draw of the locking angle would not be quite fifteen degrees; but it is evident no lock can take place until the angle _a_ of the entrance pallet has passed inside the circle _s_. We would say here that we have added the letters _s_ and _t_ to the original drawings, as we have frequently to refer to these circles, and without letters had no means of designation. Before the locking angle _k'_ of the tooth can engage the pallet, as shown in Fig. 84, the pallet must turn on the center _C_ through an angular movement of at least four degrees. We show the situation in the diagram at Fig. 86, using the same letters of reference for similar parts as in Fig. 84. [Illustration: Fig. 86] As drawn in Fig. 84 the angle of draft _G a I_ is equal to fifteen degrees, but when brought in a position to act as shown at _G a' I'_, Fig. 86, the draw is less even than twelve degrees. The angle _C a I_ remains constant, as shown at _C a' I'_, but the relation to the radial _A G_ changes when the pallet moves through the angle _w C w'_,
PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   >>   >|  



Top keywords:
pallet
 

locking

 

tangential

 
center
 

degrees

 

letters

 

radial

 

represents

 

entrance

 

Illustration


circle

 
circles
 

similar

 
engaging
 
lockings
 

fifteen

 

friction

 

engage

 

considered

 

drawings


original

 

frequently

 

passed

 

extended

 

evident

 
outward
 

inside

 

position

 

brought

 

relation


constant

 

remains

 
twelve
 

Before

 

designation

 

angular

 

movement

 

diagram

 

reference

 

situation


escapement
 
neutral
 

repeat

 

repeatedly

 

spoken

 
escape
 

illustration

 
previously
 
farther
 

closer