FREE BOOKS

Author's List




PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   >>   >|  
on, let us imagine that a real guard point rests on the circle _c_ at _h_. Suppose we make a notch in the guard roller represented by the circle _c_, to admit such imaginary guard point, and then commence to revolve the circle _c_ in the direction of the arrow _j_, letting the guard point rest constantly in such notch. When the notch _n_ in _c_ has been carried through thirty degrees of arc, counting from _B_ as a center, the guard point, as relates to _A_ as a center, would only have passed through an arc of five degrees. We show such a guard point and notch at _o n_. In fact, if a jewel pin was set to engage the fork on the pitch circle _b a_, the escapement would lock. To obviate such lock we widen the notch _n_ to the extent indicated by the dotted lines _n'_, allowing the guard point to fall back, so to speak, into the notch _n_, which really represents the passing hollow. It is not to be understood that the extended notch at _n_ is correctly drawn as regards position, because when the guard point was on the line _A f_ the point _o_ would be in the center of the extended notch, or passing hollow. We shall next give the details of drawing the double roller, but before doing so we deemed it important to explain the action of such guard points more fully than has been done heretofore. HOW TO DESIGN A DOUBLE-ROLLER ESCAPEMENT. We have already given very desirable forms for the parts of a double-roller escapement, consequently we shall now deal chiefly with acting principles as regards the rollers, but will give, at Fig. 82, a very well proportioned and practical form of fork. The pitch circle of the jewel pin is indicated by the dotted circle _a_, and the jewel pin of the usual cylindrical form, with two-fifths cut away. The safety roller is three-fifths of the diameter of the pitch diameter of the jewel-pin action, as indicated by the dotted circle _a_. The safety roller is shown in full outline at _B'_, and the passing hollow at _E_. It will be seen that the arc of intersection embraced between the radial lines _B c_ and _B d_ is about sixty-one and a half degrees for the roller, but the angular extent of the passing hollow is only a little over thirty-two degrees. The passing hollow _E_ is located and defined by drawing the radial line _B c_ from the center _B_ through the intersection of radial line _A i_ with the dotted arc _b_, which represents the pitch circle of the safety roller. We will name this inte
PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   >>   >|  



Top keywords:

circle

 

roller

 

passing

 
hollow
 

center

 

dotted

 

degrees

 

safety

 
radial
 

extent


double

 
escapement
 

action

 
drawing
 

extended

 

fifths

 

represents

 
diameter
 

intersection

 

thirty


desirable

 
chiefly
 

embraced

 

DESIGN

 

DOUBLE

 

heretofore

 
ROLLER
 

ESCAPEMENT

 
angular
 

located


defined

 

cylindrical

 

practical

 

proportioned

 
principles
 
rollers
 
acting
 

outline

 

relates

 

imagine


counting

 

carried

 
passed
 

constantly

 

imaginary

 

represented

 
Suppose
 

commence

 

letting

 

revolve