FREE BOOKS

Author's List




PREV.   NEXT  
|<   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136  
137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   >>   >|  
nwards. These stresses rapidly replace one another as the satellite travels along. They are resisted by the inertia of the crust, and are taken up by its elasticity. The nature of this succession of alternate compressions and rarefactions in the crust possess some resemblance to those arising in an earthquake shock. If we consider the effects taking place laterally to the line of motion we see that there are no such changes in the nature of the forces in the crust. At each passage of the satellite the horizontal tearing stress increases to a maximum, when it is exerted laterally, along the line passing through the horizontal projection of the satellite and at right angles to the line of motion, and again dies away. It is always a tearing stress, renewed again and again. This effect is at its maximum along two particular parallel lines which are tangents to the circle of maximum horizontal stress and which run parallel with the path of the satellite. The distance separating these lines depend upon the elevation of the satellite above the planet's surface. Such lines mark out the theoretical axes of the "double canals" which future crustal movements will more fully develop. It is interesting to consider what the effect of such 185 conditions would be if they arose at the surface of our own planet. We assume a horizontal force in the crust adequate to set up tensile stresses of the order, say, of fifteen tons to the square foot and these stresses to be repeated every few hours; our world being also subject to the dynamic effects we recognise in and beneath its crust. It is easy to see that the areas over which the satellite exerted its gravitational stresses must become the foci --foci of linear form--of tectonic developments or crust movements. The relief of stresses, from whatever cause arising, in and beneath the crust must surely take place in these regions of disturbance and along these linear areas. Here must become concentrated the folding movements, which are under existing conditions brought into the geosynclines, along with their attendant volcanic phenomena. In the case of Mars such a concentration of tectonic events would not, owing to the absence of extensive subaerial denudation and great oceans, be complicated by the existence of such synclinal accumulations as have controlled terrestrial surface development. With the passage of time the linear features would probably develop; the energetic
PREV.   NEXT  
|<   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136  
137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   >>   >|  



Top keywords:
satellite
 
stresses
 
horizontal
 

linear

 
stress
 

movements

 
maximum
 
surface
 

beneath

 

tearing


nature

 
exerted
 

develop

 

parallel

 

effect

 
tectonic
 

planet

 

passage

 

effects

 

conditions


motion

 

arising

 

laterally

 

nwards

 

fifteen

 

developments

 

relief

 

tensile

 
subject
 
surely

dynamic

 
gravitational
 

recognise

 

repeated

 

square

 

oceans

 

complicated

 

existence

 

synclinal

 

denudation


absence

 
extensive
 

subaerial

 

accumulations

 

features

 
energetic
 
controlled
 

terrestrial

 

development

 
adequate