FREE BOOKS

Author's List




PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  
i's map (ante p. 166), we are given the course of the lines as fragments of incomplete curves. Now these curves might have been anything at all. We must take them as they are, however, when we apply them as a test of the theory that the motion of a satellite round Mars can strike such lines. If it can be shown that satellites revolving round Mars might strike just such curves then we assume this as an added confirmation of the hypothesis. We must begin by realising what sort of curves a satellite which disturbs the surface of a planet would leave behind it after its demise. You might think that the satellite revolving round and round the planet must simply describe a circle upon the spherical surface of the planet: a "great circle" as it is called; that is the greatest circle which can be described upon a sphere. This great circle can, however, only be struck, as you will see, when the planet is not turning upon its axis: a condition not likely to be realised. This diagram (PI. XXI) shows the surface of a globe 188 covered with the usual imaginary lines of latitude and longitude. The orbit of a supposed satellite is shown by a line crossing the sphere at some assumed angle with the equator. Along this line the satellite always moves at uniform velocity, passing across and round the back of the sphere and again across. If the sphere is not turning on its polar axis then this satellite, which we will suppose armed with a pencil which draws a line upon the sphere, will strike a great circle right round the sphere. But the sphere is rotating. And it is to be expected that at different times in a planet's history the rate of rotation varies very much indeed. There is reason to believe that our own day was once only 21/2 hours long, or thereabouts. After a preliminary rise in velocity of axial rotation, due to shrinkage attending rapid cooling, a planet as it advances in years rotates slower and slower. This phenomenon is due to tidal influences of the sun or of satellites. On the assumption that satellites fell into Mars there would in his case be a further action tending to shorten his day as time went on. The effect of the rotation of the planet will be, of course, that as the satellite advances with its pencil it finds the surface of the sphere being displaced from under it. The line struck ceases to be the great circle but wanders off in another curve--which is in fact not a circle at all. You will readi
PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  



Top keywords:

sphere

 

planet

 
satellite
 

circle

 

surface

 

curves

 

strike

 

satellites

 

rotation

 

advances


velocity

 
slower
 
pencil
 

struck

 
turning
 
revolving
 

reason

 

rotating

 

expected

 

effect


varies

 

shorten

 

history

 

tending

 

ceases

 

rotates

 

phenomenon

 

cooling

 

assumption

 
influences

preliminary

 

thereabouts

 
action
 

wanders

 

attending

 
shrinkage
 

displaced

 
hypothesis
 

realising

 
confirmation

assume

 

demise

 

simply

 
disturbs
 

motion

 

theory

 
fragments
 

incomplete

 

describe

 
spherical