FREE BOOKS

Author's List




PREV.   NEXT  
|<   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165  
166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>   >|  
rised attractions, there is equal retardation and equal ionisation in the molecule in whatever 234 direction it is approached. Or, again, if the encounters indeed differ in number, then some compensating effect must exist whereby a direction of lesser linear density involves greater stopping power in the molecule encountered, and vice versa. The nature of the change produced by the alpha rays is unknown. But the formation of the halo is not, at least in its earlier stages, attended by destruction of the crystallographic and optical properties of the medium. The optical properties are unaltered in nature but are increased in intensity. This applies till the halo has become so darkened that light is no longer transmitted under the conditions of thickness obtaining in rock sections. It is well known that there is in biotite a maximum absorption of a plane-polarised light ray, when the plane of vibration coincides with the plane of cleavage. A section across the cleavage then shows a maximum amount of absorption. A halo seen on this section simply produces this effect in a more intense degree. This is well shown in Plate XXIII (lower figure), on a portion of the halo-sphere. The descriptive name "Pleochroic Halo" has originated from this fact. We must conclude that the effect of the ionisation due to the alpha ray has not been to alter fundamentally the conditions which give rise to the optical properties of the medium. The increased absorption is probably associated with some change in the chemical state of the iron present. Haloes are, I believe, not found in minerals from which this 235 element is absent. One thing is quite certain. The colouration is not due to an accumulation of helium atoms, _i.e._ of spent alpha rays. The evidence for this is conclusive. If helium was responsible we should have haloes produced in all sorts of colourless minerals. Now we sometimes see zircons in felspars and in quartz, etc., but in no such case is a halo produced. And halo-spheres formed within and sufficiently close to the edge of a crystal of mica are abruptly truncated by neighbouring areas of fclspar or quartz, although we know that the rays must pass freely across the boundary. Again it is easy to show that even in the oldest haloes the quantity of helium involved is so small that one might say the halo-sphere was a tolerably good vacuum as regards helium. There is, finally, no reason to suppose that the imprisone
PREV.   NEXT  
|<   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165  
166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>   >|  



Top keywords:
helium
 
produced
 
optical
 

properties

 
absorption
 

effect

 
quartz
 
conditions
 

haloes

 

maximum


section

 
increased
 

cleavage

 

medium

 

nature

 
minerals
 

change

 

direction

 

ionisation

 

molecule


sphere

 

Haloes

 

evidence

 

accumulation

 

present

 

absent

 

colouration

 

conclusive

 
element
 
responsible

formed

 
oldest
 

quantity

 

involved

 

freely

 

boundary

 

finally

 

reason

 

suppose

 

imprisone


tolerably

 
vacuum
 

spheres

 

chemical

 

felspars

 
zircons
 
sufficiently
 

neighbouring

 

fclspar

 
truncated