being below the freezing point of unstressed water. The final
result is the uniform lens of ice. The same process goes on in a
less perfect manner when you make--or shall I better say--when you
made snowballs.
We now come to theories of glacier motion; of which there are
two. The one refers it mainly to regelation; the other to a real
viscosity of the ice.
The late J. C. M'Connel established the fact that ice possesses
viscosity; that is, it will slowly yield and change its shape
under long continued stresses. His observations, indeed, raise a
difficulty in applying this viscosity to explain glacier motion,
for he showed that an ice crystal is only viscous in a certain
structural
284
direction. A complex mixture of crystals such, as we know glacier
ice to be, ought, we would imagine, to display a nett or
resultant rigidity. A mass of glacier ice when distorted by
application of a force must, however, undergo precisely the
transformations which took place in forming the lens from the
fragments of ice. In fact, regelation will confer upon it all the
appearance of viscosity.
Let us picture to ourselves a glacier pressing its enormous mass
down a Swiss valley. At any point suppose it to be hindered in
its downward path by a rocky obstacle. At that point the ice
turns to water just as it does beneath the skate. The cold water
escapes and solidifies elsewhere. But note this, only where there
is freedom from pressure. In escaping, it carries away its latent
heat of liquefaction, and this we must assume, is lost to the
region of ice lately under pressure. This region will, however,
again warm up by conduction of heat from the surrounding ice, or
by the circulation of water from the suxface. Meanwhile, the
pressure at that point has been relieved. The mechanical
resistance is transferred elsewhere. At this new point there is
again melting and relief of pressure. In this manner the glacier
may be supposed to move down. There is continual flux of
conducted heat and converted latent heat, hither and thither, to
and from the points of resistance. The final motion of the whole
mass is necessarily slow; a few feet in the day or, in winter,
285
even only a few inches. And as we might expect, perfect silence
attends the downward slipping of the gigantic mass. The motion
is, I believe, sufficiently explained as a skating motion. The
skate is, however, fixed, the ice moves. The great Aletsch
Glacier collects its snows
|