FREE BOOKS

Author's List




PREV.   NEXT  
|<   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176  
177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   >>  
dium C. One thing here we must be clear about. With a given quantity of Radium only a certain definitely limited amount of Radium C, or of emanation, or any other of the derived bodies, will be associated. Why is this? The answer is because the several successive elements are themselves decaying --_i.e._ changing one into the other. The atomic per- 254 centage of each, which decays in a second, is a fixed quantity which we cannot alter. Now if we picture radium which has been completely deprived of its emanation, again accumulating by automatic transmutation a fresh store of this element, we have to remember:-- (i) That the rate of creation of emanation by the radium is practically constant; and (2) that the absolute amount of the emanation decaying per second increases as the stock of emanation increases. Finally, when the amount of accumulated emanation has increased to such an extent that the number of emanation atoms transmuting per second becomes exactly equal to the number being generated per second, the amount of emanation present cannot increase. This is called the equilibrium amount. If fifteen members are elected steadily each year into a newly-founded society the number of members will increase for the first few years; finally, when the losses by death of the members equal about fifteen per annum the society can get no bigger. It has attained the equilibrium number of members. This applies to every one of the successive elements. It takes twenty-one days for the equilibrium quantity of emanation to be formed in radium which has been completely de-emanated; and it takes 3.8 days for half the equilibrium amount to be formed. Again, if we start with a stock of emanation it takes just three hours for the equilibrium amount of Radium C to be formed. 255 We can evidently grow Radium C either from radium itself or from the emanation of radium. If we use a tube of radium we have an almost perfectly constant quantity of Radium C present, for as fast as the Radium C and intervening elements decay the Radium, which only diminishes very slowly in amount, makes up the loss. But, if we start off with a tube of emanation, we do not possess a constant supply of Radium C, because the emanation is decaying fairly rapidly and there is no radium to make good its loss. In 3.8 days about one half the emanation is transmuted and the Radium C decreases proportionately and, of course, with the Radium C the valuable rad
PREV.   NEXT  
|<   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176  
177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   >>  



Top keywords:

emanation

 

Radium

 

amount

 
radium
 

equilibrium

 
members
 
quantity
 

number

 

decaying

 

constant


formed
 

elements

 

present

 

completely

 

increases

 

increase

 
society
 

successive

 
fifteen
 
emanated

decreases

 

bigger

 

attained

 

valuable

 
applies
 

proportionately

 

transmuted

 
twenty
 

possess

 

diminishes


supply

 

intervening

 

perfectly

 

slowly

 

losses

 

evidently

 

fairly

 

rapidly

 

accumulated

 

changing


atomic

 
answer
 

centage

 
decays
 

deprived

 
picture
 

derived

 
bodies
 

limited

 

accumulating