FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
ly see how we find this curve. Suppose the sphere to be rotating at such a speed that while the satellite is advancing the distance _Oa_, the point _b_ on the 189 sphere will be carried into the path of the satellite. The pencil will mark this point. Similarly we find that all the points along this full curved line are points which will just find themselves under the satellite as it passes with its pencil. This curve is then the track marked out by the revolving satellite. You see it dotted round the back of the sphere to where it cuts the equator at a certain point. The course of the curve and the point where it cuts the equator, before proceeding on its way, entirely depend upon the rate at which we suppose the sphere to be rotating and the satellite to be describing the orbit. We may call the distance measured round the planet's equator separating the starting point of the curve from the point at which it again meets the equator, the "span" of the curve. The span then depends entirely upon the rate of rotation of the planet on its axis and of the satellite in its orbit round the planet. But the nature of events might have been somewhat different. The satellite is, in the figure, supposed to be rotating round the sphere in the same direction as that in which the sphere is turning. It might have been that Mars had picked up a satellite travelling in the opposite direction to that in which he was turning. With the velocity of planet on its axis and of satellite in its orbit the same as before, a different curve would have been described. The span of the curve due to a retrograde satellite will be greater than that due to a direct satellite. The retrograde satellite will have a span more than half 190 way round the planet, the direct satellite will describe a curve which will be less than half way round the planet: that is a span due to a retrograde satellite will be more than 180 degrees, while the span due to a direct satellite will be less than 180 degrees upon the planet's equator. I would draw your attention to the fact that what the span will be does not depend upon how much the orbit of the satellite is inclined to the equator. This only decides how far the curve marked out by the satellite will recede from the equator. We find then, so far, that it is easy to distinguish between the direct and the retrograde curves. The span of one is less, of the other greater, than 180 degrees. The number of d
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:
satellite
 
equator
 
planet
 

sphere

 
retrograde
 

direct

 
degrees
 
rotating
 

greater


turning

 

depend

 
direction
 

points

 

distance

 

pencil

 
marked
 

travelling

 

opposite


picked

 

describe

 

curves

 

distinguish

 

attention

 

number

 

decides

 

velocity

 

inclined


recede

 
suppose
 
curved
 

Similarly

 
passes
 

Suppose

 

advancing

 

carried

 

depends


starting

 

separating

 

rotation

 

figure

 

events

 
nature
 

measured

 

dotted

 

revolving


describing
 
proceeding
 

supposed