FREE BOOKS

Author's List




PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>   >|  
h what is known of the physics of chemical activity. Finally, as will be seen later, it is hardly adequate to account for the varying degrees of stability which may apparently characterise the latent image. Still, there is much in Bose's work deserving of careful consideration. He has by no means exhausted the line of investigation he has originated. Another theory has doubtless been in the minds of many. I have said we must seek guidance in some photo-physical phenomenon. There is one such which preeminently connects light and chemical phenomena through the intermediary of the effects of the former upon a component part of the atom. I refer to the phenomena of photo-electricity. It was ascertained by Hertz and his immediate successors that light has a remarkable power of discharging negative electrification from the surface of bodies--especially from certain substances. For long no explanation of the cause of this appeared. But the electron--the ubiquitous electron--is now known with considerable certainty to be responsible. The effect of the electric force in the light wave is to direct or assist the electrons contained in the substance to escape from the surface of the body. Each electron carries away a very small charge of negative electrification. If, then, a body is 204 originally charged negatively, it will be gradually discharged by this convective process. If it is not charged to start with, the electrons will still be liberated at the surface of the body, and this will acquire a positive charge. If the body is positively charged at first, we cannot discharge it by illumination. It would be superfluous for me to speak here of the nature of electrons or of the various modes in which their presence may be detected. Suffice it to say, in further connection with the Hertz effect, that when projected among gaseous molecules the electron soon attaches itself to one of these. In other words, it ionises a molecule of the gas or confers its electric charge upon it. The gaseous molecule may even be itself disrupted by impact of the electron, if this is moving fast enough, and left bereft of an electron. We must note that such ionisation may be regarded as conferring potential chemical properties upon the molecules of the gas and upon the substance whence the electrons are derived. Similar ionisation under electric forces enters, as we now believe, into all the chemical effects progressing in the galvanic
PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>   >|  



Top keywords:

electron

 

electrons

 
chemical
 

surface

 

charge

 

charged

 

electric

 

gaseous

 

molecule

 

molecules


negative

 
effect
 
electrification
 

substance

 
effects
 
phenomena
 

ionisation

 

acquire

 

positive

 

liberated


positively

 

conferring

 

illumination

 

potential

 

properties

 

derived

 

discharge

 

Similar

 

originally

 
progressing

galvanic

 

negatively

 
convective
 

superfluous

 

discharged

 
gradually
 

enters

 
forces
 

process

 
attaches

moving

 

bereft

 

ionises

 
impact
 

disrupted

 

projected

 
nature
 

confers

 

presence

 
detected