FREE BOOKS

Author's List




PREV.   NEXT  
|<   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156  
157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   >>   >|  
state, whether the element is in the solid, liquid or gaseous state, is unimportant. And when we deal with molecules the stopping power is simply proportional to the sum of the square roots of the atomic weights of the atoms entering into the molecule. This is the "additive law," and it obviously enables us to calculate what the range in any substance of known chemical composition and density will be, compared with the range in air. This is of special importance in connection with phenomena we have presently to consider. It means that, knowing the chemical composition and density of any medium whatsoever, solid, liquid or gaseous, we can calculate accurately the distance to which any particular alpha ray will penetrate. Nor have the temperature and pressure to which the medium is subjected any influence save in so far as they may affect the proximity of one atom to another. The retardation of the alpha ray in the atom is not affected. This valuable additive law, however, cannot be applied in strictness to the amount of ionisation attending the ray. The form of the molecule, or more generally its volume, may have an influence upon this. Bragg draws the conclusion, from this fact as well as from the notable increase of ionisation with loss of speed, that the ionisation is dependent upon the time the ray spends in the molecule. The energy of the ray is, indeed, found to be less efficient in producing ionisation in the smaller atomm. 220 Before leaving our review of the general laws governing the passage of alpha rays through matter, another point of interest must be referred to. We have hitherto spoken in general terms of the fact that ionisation attends the passage of the ray. We have said nothing as to the nature of the ionisation so produced. But in point of fact the ionisation due to an alpha ray is sui generis. A glance at one of Wilson's photographs (Fig. 14.) illustrates this. The white streak of water particles marks the path of the ray. The ions produced are evidently closely crowded along the track of the ray. They have been called into existence in a very minute instant of time. Now we know that ions of opposite sign if left to themselves recombine. The rate of recombination depends upon the product of the number of each sign present in unit volume. Here the numbers are very great and the volume very small. The ionic density is therefore high, and recombination very rapidly removes the ions after t
PREV.   NEXT  
|<   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156  
157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   >>   >|  



Top keywords:

ionisation

 

molecule

 
volume
 

density

 

influence

 

medium

 

passage

 

general

 

produced

 

recombination


composition

 
gaseous
 
calculate
 

additive

 
chemical
 
liquid
 

Wilson

 

generis

 

glance

 

streak


particles

 

illustrates

 

photographs

 

nature

 

matter

 

interest

 

governing

 

referred

 

attends

 
unimportant

hitherto

 

spoken

 
crowded
 

present

 

number

 
depends
 

product

 
numbers
 

removes

 
rapidly

recombine

 

called

 

existence

 
closely
 

review

 

element

 
opposite
 

minute

 

instant

 
evidently