FREE BOOKS

Author's List




PREV.   NEXT  
|<   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281  
282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   >>   >|  
xample of this kind of cleavage. Turn we now to the consideration of some other phenomena to which the term cleavage may be applied. Beech, deal, and other woods cleave with facility along the fibre, and this cleavage is most perfect when the edge of the axe is laid across the rings which mark the growth of the tree. If you look at this bundle of hay severed from a rick, you will see a sort of cleavage in it also; the stalks lie in horizontal planes, and only a small force is required to separate them laterally. But we cannot regard the cleavage of the tree as the same in character as that of the hayrick. In the one case it is the molecules arranging themselves according to organic laws which produce a cleavable structure, in the other case the easy separation in one direction is due to the mechanical arrangement of the coarse sensible stalks of hay. This sandstone rock was once a powder held in mechanical suspension by water. The powder was composed of two distinct parts, fine grains of sand and small plates of mica. Imagine a wide strand covered by a tide, or an estuary with water which holds such powder in suspension: how will it sink? The rounded grains of sand will reach the bottom first, because they encounter least resistance, the mica afterwards, and when the tide recedes we have the little plates shining like spangles upon the surface of the sand. Each successive tide brings its charge of mixed powder, deposits its duplex layer day after day, and finally masses of immense thickness are piled up, which by preserving the alternations of sand and mica tell the tale of their formation. Take the sand and mica, mix them together in water, and allow them to subside; they will arrange themselves in the manner indicated, and by repeating the process you can actually build up a mass which shall be the exact counterpart of that presented by nature. Now this structure cleaves with readiness along the planes in which the particles of mica are strewn. Specimens of such a rock sent to me from Halifax, and other masses from the quarries of Over Darwen in Lancashire, are here before you. With a hammer and chisel I can cleave them into flags; indeed these flags are employed for roofing purposes in the districts from which the specimens have come, and receive the name of 'slatestone.' But you will discern without a word from me, that this cleavage is not a crystalline cleavage any more than that of a hayrick is. I
PREV.   NEXT  
|<   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281  
282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   >>   >|  



Top keywords:

cleavage

 

powder

 
masses
 

hayrick

 

stalks

 
planes
 
grains
 
suspension
 

mechanical

 

structure


plates
 

cleave

 

subside

 
arrange
 
formation
 
repeating
 
process
 

manner

 

preserving

 
deposits

duplex

 

charge

 

successive

 

brings

 

consideration

 
alternations
 

thickness

 

finally

 

phenomena

 

immense


presented

 

purposes

 
districts
 

specimens

 

roofing

 

xample

 

employed

 
receive
 

crystalline

 

slatestone


discern

 

particles

 

strewn

 

Specimens

 

readiness

 
cleaves
 
surface
 

nature

 

Halifax

 

hammer