FREE BOOKS

Author's List




PREV.   NEXT  
|<   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328  
329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   >>   >|  
y, and adding all together, we should get a number representing the exact amount of heat developed by the union of the oxygen and carbon. Thus far we have regarded the heat developed by the clashing of sensible masses and of atoms. Work is expended in giving motion to these atoms or masses, and heat is developed. But we reverse this process daily, and by the expenditure of heat execute work. We can raise a weight by heat; and in this agent we possess an enormous store of mechanical power. A pound of coal produces by its combination with oxygen an amount of heat which, if mechanically applied, would suffice to raise a weight of 100 lbs. to a height of 20 miles above the earth's surface. Conversely, 100 lbs. falling from a height of 20 miles, and striking against 'the earth, would generate an amount of heat equal to that developed by the combustion of a pound of coal. Wherever work is done by heat, heat disappears. A gun which fires a ball is less heated than one which fires blank cartridge. The quantity of heat communicated to the boiler of a working steam-engine is greater than that which could be obtained from the re-condensation of the steam, after it had done its work; and the amount of work performed is the exact equivalent of the amount of heat lost. Mr. Smyth informed us in his interesting discourse, that we dig annually 84 millions of tons of coal from our pits. The amount of mechanical force represented by this quantity of coal seems perfectly fabulous. The combustion of a single pound of coal, supposing it to take place in a minute, would be equivalent to the work of 300 horses; and if we suppose 108 millions of horses working day and night with unimpaired strength, for a year, their united energies would enable them to perform an amount of work just equivalent to that which the annual produce of our coal-fields would be able to accomplish. Comparing with ordinary gravity the force with which oxygen and carbon unite together, chemical affinity seems almost infinite. But let us give gravity fair play by permitting it to act throughout its entire range. Place a body at such a distance from the earth that the attraction of our planet is barely sensible, and let it fall to the earth from this distance. It would reach the earth with a final velocity of 36,747 feet a second; and on collision with the earth the body would generate about twice the amount of heat generated by the combustion of an equal we
PREV.   NEXT  
|<   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328  
329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   >>   >|  



Top keywords:

amount

 

developed

 
equivalent
 

combustion

 

oxygen

 

mechanical

 
distance
 
quantity
 

carbon

 

working


weight
 
height
 
horses
 

masses

 

millions

 

gravity

 
generate
 

produce

 

annual

 

energies


enable

 

perform

 

united

 

unimpaired

 

single

 

supposing

 

fabulous

 

perfectly

 

represented

 

minute


strength

 

suppose

 

barely

 

attraction

 

planet

 
velocity
 
generated
 

collision

 

chemical

 

affinity


ordinary
 
accomplish
 

Comparing

 

infinite

 

entire

 

permitting

 
fields
 

performed

 
combination
 

mechanically