FREE BOOKS

Author's List




PREV.   NEXT  
|<   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327  
328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   >>   >|  
on still continues; the motion of the mass is converted into a motion of the atoms of the mass; and these small motions, communicated to the nerves, produce the sensation we call heat. We know the amount of heat which a given amount of mechanical force can develope. Our lead ball, for example, in falling to the earth generated a quantity of heat sufficient to raise its own temperature three-fifths of a Fahrenheit degree. It reached the earth with a velocity of 32 feet a second, and forty times this velocity would be small for a rifle bullet; multiplying 0.6 by the square of 40, we find that the amount of heat developed by collision with the target would, if wholly concentrated in the lead, raise its temperature 960 degrees. This would be more than sufficient to fuse the lead. In reality, however, the heat developed is divided between the lead and the body against which it strikes; nevertheless, it would be worth while to pay attention to this point, and to ascertain whether rifle bullets do not, under some circumstances, show signs of fusion. [Footnote: Eight years subsequently this surmise was proved correct. In the Franco-German War signs of fusion were observed in the case of bullets impinging on bones.] From the motion of sensible masses, by gravity and other means, we now pass to the motion of atoms towards each other by chemical affinity. A collodion balloon filled with a mixture of chlorine and hydrogen being hung in the focus of a parabolic mirror, in the focus of a second mirror 20 feet distant a strong electric light was suddenly generated; the instant the concentrated light fell upon the balloon, the gases within it exploded, hydrochloric acid being the result. Here the atoms virtually fell together, the amount of heat produced showing the enormous force of the collision. The burning of charcoal in oxygen is an old experiment, but it has now a significance beyond what it used to have; we now regard the act of combination on the part of the atoms of oxygen and coal as we regard the clashing of a falling weight against the earth. The heat produced in both cases is referable to a common cause. A diamond, which burns in oxygen as a star of white light, glows and burns in consequence of the falling of the atoms of oxygen against it. And could we measure the velocity of the atoms when they clash, and could we find their number and weights, multiplying the weight of each atom by the square of its velocit
PREV.   NEXT  
|<   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327  
328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   >>   >|  



Top keywords:

motion

 

oxygen

 
amount
 

falling

 

velocity

 

square

 
regard
 
multiplying
 

mirror

 

fusion


balloon
 
bullets
 
concentrated
 

collision

 

produced

 

developed

 
sufficient
 

generated

 

temperature

 

weight


distant

 

strong

 

suddenly

 

instant

 

measure

 

electric

 

hydrogen

 

chemical

 

affinity

 

velocit


collodion

 

weights

 

number

 

exploded

 

chlorine

 
filled
 
mixture
 

parabolic

 

significance

 

referable


common
 
clashing
 

experiment

 

virtually

 

combination

 

consequence

 
result
 

showing

 
diamond
 

charcoal