FREE BOOKS

Author's List




PREV.   NEXT  
|<   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326  
327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   >>   >|  
With a seven-fold velocity at starting, the weight would rise to 49 times the height, or to an elevation of 784 feet. Now the work done--or, as it is sometimes called, the _mechanical effect_--other things being constant, is, as before explained, proportional to the height, and as a double velocity gives four times the height, a treble velocity nine times the height, and so on, it is perfectly plain that the mechanical effect increases as the square of the velocity. If the mass of the body be represented by the letter m, and its velocity by v, the mechanical effect would be proportional to or represented by m v2. In the case considered, I have supposed the weight to be cast upward, being opposed in its flight by the resistance of gravity; but the same holds true if the projectile be sent into water, mud, earth, timber, or other resisting material. If, for example, we double the velocity of a cannon-ball, we quadruple its mechanical effect. Hence the importance of augmenting the velocity of a projectile, and hence the philosophy of Sir William Armstrong in using a large charge of powder in his recent striking experiments. The measure then of mechanical effect is the mass of the body multiplied by the square of its velocity. Now in firing a ball against a target the projectile, after collision, is often found hot. Mr. Fairbairn informs me that in the experiments at Shoeburyness it is a common thing to see a flash, even in broad daylight, when the ball strikes the target. And if our lead weight be examined after it has fallen from a height it is also found heated. Now here experiment and reasoning lead us to the remarkable law that, like the mechanical effect, the amount of heat generated is proportional to the product of the mass into the square of the velocity. Double your mass, other things being equal, and you double your amount of heat; double your velocity, other things remaining equal, and you quadruple your amount of heat. Here then we have common mechanical motion destroyed and heat produced. When a violin bow is drawn across a string, the sound produced is due to motion imparted to the air, and to produce that motion muscular force has been expended. We may here correctly say, that the mechanical force of the arm is converted into music. In a similar way we say that the arrested motion of our descending weight, or of the cannon-ball, is converted into heat. The mode of motion changes, but moti
PREV.   NEXT  
|<   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326  
327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   >>   >|  



Top keywords:

velocity

 

mechanical

 
effect
 

height

 

motion

 

double

 
weight
 
proportional
 

things

 

square


amount
 
projectile
 
produced
 

quadruple

 

cannon

 

represented

 
converted
 

common

 

target

 

experiments


experiment

 

strikes

 

Fairbairn

 

daylight

 

heated

 

informs

 

fallen

 

Shoeburyness

 

examined

 

Double


imparted

 

string

 

similar

 

produce

 

muscular

 
correctly
 
expended
 

generated

 

product

 

remarkable


descending
 
remaining
 

arrested

 

violin

 

destroyed

 

reasoning

 
importance
 

perfectly

 
increases
 

treble