FREE BOOKS

Author's List




PREV.   NEXT  
|<   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368  
369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   >>   >|  
t started by his observation in Java. But the conviction once formed, that an unalterable relation subsists between work and heat, it was: inevitable that Mayer should seek to express it numerically. It was also inevitable that a mind like his, having raised itself to clearness on this important point, should push forward to consider the relationship of natural forces generally. At the beginning of 1842 his work had made considerable progress; but he had become physician to the town of Heilbronn, and the duties of his profession limited the time which he could devote to purely scientific enquiry. He thought it wise, therefore, to secure himself against accident, and in the spring of 1842 wrote to Liebig, asking him to publish in his 'Annalen' a brief preliminary notice of the work then accomplished. Liebig did so, and Dr. Mayer's first paper is contained in the May number of the 'Annalen' for 1842. Mayer had reached his conclusions by reflecting on the complex processes of the living body; but his first step in public was to state definitely the physical principles on which his physiological deductions were to rest. He begins, therefore, with the forces of inorganic nature. He finds in the universe two systems of causes which are not mutually convertible;--the different kinds of matter and the different forms of force. The first quality of both he affirms to be indestructibility. A force cannot become nothing, nor can it arise from nothing. Forces are convertible but not destructible. In the terminology of his time, he then gives clear expression to the ideas of potential and dynamic energy, illustrating his point by a weight resting upon the earth, suspended at a height above the earth, and actually falling to the earth. He next fixes his attention on cases where motion is apparently destroyed, without producing other motion; on the shock of inelastic bodies, for example. Under what form does the vanished motion maintain itself? Experiment alone, says Mayer, can help us here. He warms water by stirring it; he refers to the force expended in overcoming friction. Motion in both cases disappears; but heat is generated, and the quantity generated is the equivalent of the motion destroyed. 'Our locomotives,' he observes with extraordinary sagacity, 'may be compared to distilling apparatus: the heat beneath the boiler passes into the motion of the train, and is again deposited as heat in the axles and wheels.
PREV.   NEXT  
|<   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368  
369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   >>   >|  



Top keywords:

motion

 

generated

 
Liebig
 

forces

 

destroyed

 

convertible

 

inevitable

 

Annalen

 

resting

 

falling


suspended

 
height
 
attention
 

destructible

 
indestructibility
 

affirms

 

matter

 

quality

 

Forces

 

potential


dynamic

 

energy

 

illustrating

 

expression

 
terminology
 

weight

 
observes
 

locomotives

 

extraordinary

 

sagacity


equivalent

 
friction
 

Motion

 

disappears

 

quantity

 
compared
 

distilling

 
deposited
 

wheels

 

apparatus


beneath

 

boiler

 
passes
 

overcoming

 

expended

 
bodies
 

inelastic

 
apparently
 

producing

 

vanished