FREE BOOKS

Author's List




PREV.   NEXT  
|<   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369  
370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   >>   >|  
A numerical solution of the relation between heat and work was what Mayer aimed at, and towards the end of his first paper he makes the attempt. It was known that a definite amount of air, in rising one degree in temperature, can take up two different amounts of heat. If its volume be kept constant, it takes up one amount: if its pressure be kept constant it takes up a different amount. These two amounts are called the specific heat under constant volume and under constant pressure. The ratio of the first to the second is as 1: 1.421. No man, to my knowledge, prior to Dr. Mayer, penetrated the significance of these two numbers. He first saw that the excess 0.421 was not, as then universally supposed, heat actually lodged in the gas, but heat which had been actually consumed by the gas in expanding against pressure. The amount of work here performed was accurately known, the amount of heat consumed was also accurately known, and from these data Mayer determined the mechanical equivalent of heat. Even in this first paper he is able to direct attention to the enormous discrepancy between the theoretic power of the fuel consumed in steam-engines, and their useful effect. Though this paper contains but the germ of his further labours, I think it may be safely assumed that, as regards the mechanical theory of heat, this obscure Heilbronn physician, in the year 1842, was in advance of all the scientific men of the time. Having, by the publication of this paper, secured himself against what he calls 'Eventualitaeten,' he devoted every hour of his spare time to his studies, and in 1845 published a memoir which far transcends his first one in weight and fulness, and, indeed, marks an epoch in the history of science. The title of Mayer's first paper was, 'Remarks on the Forces of Inorganic Nature.' The title of his second great essay was, 'Organic Motion in its Connection with Nutrition.' In it he expands and illustrates the physical principles laid down in his first brief paper. He goes fully through the calculation of the mechanical equivalent of heat. He calculates the performances of steam-engines, and finds that 100 lbs. of coal, in a good working engine, produce only the same amount of heat as 95 lbs. in an unworking one; the 5 missing lbs. having been converted into work. He determines the useful effect of gunpowder, and finds nine per cent. of the force of the consumed charcoal invested on the moving ba
PREV.   NEXT  
|<   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369  
370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   >>   >|  



Top keywords:

amount

 

consumed

 
constant
 

pressure

 

mechanical

 

accurately

 

engines

 

equivalent

 

amounts

 

volume


effect

 
Nature
 
Eventualitaeten
 

Inorganic

 
Forces
 

devoted

 

secured

 

Having

 

publication

 

transcends


memoir

 

weight

 

fulness

 

Organic

 
history
 

Remarks

 
studies
 

science

 

published

 

calculates


missing

 
converted
 

unworking

 

produce

 

determines

 
charcoal
 

invested

 
moving
 

gunpowder

 

engine


working

 

illustrates

 
physical
 

principles

 

expands

 
Connection
 

Nutrition

 
performances
 

calculation

 

Motion