FREE BOOKS

Author's List




PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  
f the current being an accurate measure of the quantity of the heat. As long as both faces of the pile are at the same temperature, no current is produced; but the slightest difference in the temperature of the two faces at once declares itself by the production of a current, which, when carried through the galvanometer, indicates by the deflection of the needle both its strength and its direction. The two faces of the pile were in the first instance brought to the same temperature; the equilibrium being shown by the needle of the galvanometer standing at zero. The rays emitted by the current of hot air already referred to were permitted to fall upon one of the faces of the pile; and an extremely slight movement of the needle showed that the radiation from the hot air, though sensible, was extremely feeble. Connected with the ring-burner was a holder containing oxygen gas; and by turning a cock, a stream of this gas was permitted to issue from the burner, strike the copper ball, and ascend in a heated column in front of the pile. The result was, that oxygen showed itself, as a radiator of heat, to be quite as feeble as atmospheric air. A second holder containing olefiant gas was then connected with the ring-burner. Oxygen and air had already flowed over the ball and cooled it in some degree. Hence the olefiant gas laboured under a disadvantage. But on permitting the gas to rise from the ball, it casts an amount of heat against the adjacent face of the pile sufficient to impel the needle of the galvanometer almost to 90 deg.. This experiment proved the vast difference between two equally invisible gases with regard to their power of emitting radiant heat. The converse experiment was now performed. The thermo-electric pile was removed and placed between two cubes filled with water kept in a state of constant ebullition; and it was so arranged that the quantities of heat falling from the cubes on the opposite faces of the pile were exactly equal, thus neutralising each other. The needle of the galvanometer being at zero, a sheet of oxygen gas was caused to issue from a slit between one of the cubes and the adjacent face of the pile. If this sheet of gas possessed any sensible power of intercepting the thermal rays from the cube, one face of the pile being deprived of the heat thus intercepted, a difference of temperature between its two faces would instantly set in, and the result would be declared by the ga
PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  



Top keywords:

needle

 

galvanometer

 
current
 

temperature

 

burner

 
oxygen
 
difference
 
showed
 

extremely

 

olefiant


result
 

permitted

 

holder

 
feeble
 
experiment
 
adjacent
 
accurate
 

converse

 

radiant

 
thermo

performed

 

amount

 

emitting

 

equally

 

invisible

 
electric
 

proved

 

regard

 

sufficient

 

possessed


intercepting

 

caused

 
thermal
 

declared

 

instantly

 

deprived

 

intercepted

 
neutralising
 

constant

 

filled


ebullition

 

opposite

 

falling

 

arranged

 

quantities

 
removed
 
referred
 

produced

 

emitted

 

standing