FREE BOOKS

Author's List




PREV.   NEXT  
|<   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320  
321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   >>   >|  
direction by the line n o, and the attraction by the shorter line n M. The resultant of these two forces will be found by completing the parallelogram m n o p, and drawing its diagonal n p. Along n p, then, a particle of north magnetism would be urged by the simultaneous action of S and N. Substituting a particle of south magnetism for n, the same reasoning would lead to the conclusion that the particle would be urged along it q. If we place at n a short magnetic needle, its north pole will be urged along n p, its south pole along n q, the only position possible to the needle, thus acted on, being along the line p q, which is no longer parallel to the magnet. Verify this deduction by actual experiment. In this way we might go round the entire magnet; and, considering its two poles as two centres from which the force emanates, we could, in accordance with ordinary mechanical principles, assign a definite direction to the magnetic needle at every particular place. And substituting, as before, a bit of iron wire for the magnetic needle, the positions of both will be the same. Now, I think, without further preface, you will be able' to comprehend for yourselves, and explain to others, one of the most interesting effects in the whole domain of magnetism. Iron filings you know are particles of iron, irregular in shape, being longer in some directions than in others. For the present experiment, moreover, instead of the iron filings, very small scraps of thin iron wire might be employed. I place a sheet of paper over the magnet; it is all the better if the paper be stretched on a wooden frame as this enables us to keep it quite level. I scatter the filings, or the scraps of wire, from a sieve upon the paper, and tap the latter gently, so as to liberate the particles for a moment from its friction. The magnet acts on the filings through the paper, and see how it arranges them! They embrace the magnet in a series of beautiful curves, which are technically called 'magnetic curves,' or 'lines of magnetic force.' Does the meaning of these lines yet flash upon you? Set your magnetic needle, or your suspended bit of wire, at any point of one of the curves, and you will find the direction of the needle, or of the wire, to be exactly that of the particle of iron, or of the magnetic curve, at that point. Go round and round the magnet; the direction of your needle always coincides with the direction of the curve on which i
PREV.   NEXT  
|<   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320  
321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   >>   >|  



Top keywords:

magnetic

 

needle

 
magnet
 

direction

 

particle

 

filings

 
curves
 
magnetism
 

longer

 

experiment


scraps
 
particles
 
stretched
 

enables

 

wooden

 

irregular

 
employed
 

present

 

directions

 

meaning


called

 

beautiful

 

technically

 

suspended

 

coincides

 

series

 

embrace

 

gently

 

scatter

 

liberate


moment

 

arranges

 

friction

 

position

 

conclusion

 
reasoning
 
deduction
 

actual

 

Verify

 

parallel


Substituting
 
forces
 

completing

 

resultant

 

attraction

 

shorter

 
parallelogram
 

simultaneous

 
action
 

drawing