FREE BOOKS

Author's List




PREV.   NEXT  
|<   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298  
299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   >>   >|  
lvanometer. The quantity absorbed by the oxygen under those circumstances was too feeble to affect the galvanometer; the gas, in fact, proved perfectly transparent to the rays of heat. It had but a feeble power of radiation: it had an equally feeble power of absorption. The pile remaining in its position, a sheet of olefiant gas was caused to issue from the same slit as that through which the oxygen had passed. No one present could see the gas; it was quite invisible, the light went through it as freely as through oxygen or air; but its effect upon the thermal rays emanating from the cube was what might be expected from a sheet of metal. A quantity so large was cut off, that the needle of the galvanometer, promptly quitting the zero line, moved with energy to its stops. Thus the olefiant gas, so light and clear and pervious to luminous rays, was proved to be a most potent destroyer of the rays emanating from an obscure source. The reciprocity of action established in the case of oxygen comes out here; the good radiator is found by this experiment to be the good absorber. This result, now exhibited before a public audience for the first time, was typical of what had been obtained with gases generally. Going through the entire list of gases and vapours in this way, we find radiation and absorption to be as rigidly associated as positive and negative in electricity, or as north and south polarity in magnetism. So that if we make the number which expresses the absorptive power the numerator of a fraction, and that which expresses its radiative power the denominator, the result would be, that on account of the numerator and denominator varying in the same, proportion, the value of that fraction would always remain the same, whatever might be the gas or vapour experimented with. But why should this reciprocity exist? What is the meaning of absorption? what is the meaning of radiation? When you cast a stone into still water, rings of waves surround the place where it falls; motion is radiated on all sides from the centre of disturbance. When a hammer strikes a bell, the latter vibrates; and sound, which is nothing more than an undulatory motion of the air, is radiated in all directions. Modern philosophy reduces light and heat to the same mechanical category. A luminous body is one with its atoms in a state of vibration; a hot body is one with its atoms also vibrating, but at a rate which is incompetent to
PREV.   NEXT  
|<   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298  
299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   >>   >|  



Top keywords:

oxygen

 

absorption

 
feeble
 

radiation

 

result

 
emanating
 
motion
 
reciprocity
 

meaning

 

quantity


radiated
 

denominator

 

expresses

 
fraction
 
olefiant
 
luminous
 
numerator
 

galvanometer

 

proved

 
remain

vapour

 

polarity

 

experimented

 

account

 

electricity

 
absorptive
 

negative

 

radiative

 

positive

 

varying


magnetism

 

number

 
proportion
 

directions

 

Modern

 

philosophy

 

reduces

 
undulatory
 

mechanical

 

category


incompetent

 

vibrating

 

vibration

 

vibrates

 

surround

 
hammer
 
strikes
 

disturbance

 

centre

 

rigidly